электрический диполь и его поле

3.2. Электрический диполь

Чтобы понять механизм поведения диэлектриков в поле на микроскопическом уровне, нам надо сначала объяснить, как может электрически нейтральная система реагировать на внешнее электрическое поле. Простейший случай — полное отсутствие зарядов — нас не интересует. Мы знаем наверняка, что в диэлектрике имеются электрические заряды — в составе атомов, молекул, ионов кристаллической решетки и т. д. Поэтому мы рассмотрим следующую по простоте конструкции электронейтральную систему — два равных по величине и противоположных по знаку точечных заряда +q и –q, находящихся на расстоянии l друг от друга. Такая система называется электрическим диполем.

Электрический диполь — это система, состоящая из двух точечных равных по величине и противоположных по знаку зарядов, находящихся на расстоянии l друг от друга (рис. 3.6).

42clip image001

Рис. 3.6. Электрический диполь

Линии напряженности электрического поля и эквипотенциальные поверхности электрического диполя выглядят следующим образом (рис. 3.7, 3.8, 3.9)

000106

Рис. 3.7. Линии напряженности электрического поля электрического диполя

000107

Рис. 3.8. Эквипотенциальные поверхности электрического диполя

000108

Рис. 3.9. Линии напряженности электрического поля и эквипотенциальные поверхности

Основной характеристикой диполя является электрический дипольный момент. Введем вектор l, направленный от отрицательного заряда (–q) к положительному (+q), тогда вектор р, называемый электрическим моментом диполя или просто дипольным моментом, определяется как

000109

Рассмотрим поведение «жесткого» диполя — то есть расстояние 688clip image001которого не меняется — во внешнем поле Е (рис. 3.10).

000469

Рис. 3.10. Силы, действующие на электрический диполь, помещенный во внешнее поле

Пусть направление дипольного момента составляет с вектором Е угол 73clip image002. На положительный заряд диполя действует сила, совпадающая по направлению с Е и равная F1 = +qE, а на отрицательный — противоположно направленная и равная F2 = –qE. Вращающий момент этой пары сил равен

689clip image001

Так как ql = р, то М = рЕ sin 73clip image002или в векторных обозначениях

690clip image001

(Напомним, что символ

691clip image001

означает векторное произведение векторов а и b.) Таким образом, при неизменном дипольном моменте молекулы (692clip image001) механический момент, действующий на нее, пропорционален напряженности Е внешнего электрического поля и зависит от угла между векторами р и E.

Под действием момента сил М диполь поворачивается, при этом совершается работа

693clip image001

которая идет на увеличение его потенциальной энергии. Отсюда получаем потенциальную энергию диполя в электрическом поле

694clip image001

695clip image001

000111

если положить const = 0.

Из рисунка видно, что внешнее электрическое поле стремится повернуть диполь таким образом, чтобы вектор его электрического момента р совпал по направлению с вектором Е. В этом случае 698clip image001, а, следовательно, и М = 0. С другой стороны, при 698clip image001потенциальная энергия диполя во внешнем поле принимает минимальное значение 699clip image001, что соответствует положению устойчивого равновесия. При отклонении диполя от этого положения снова возникает механический момент, который возвращает диполь в первоначальное положение. Другое положение равновесия, когда дипольный момент направлен против поля 700clip image001является неустойчивым. Потенциальная энергия в этом случае принимает максимальное значение 701clip image001и при небольших отклонениях от такого положения возникающие силы не возвращают диполь назад, а еще больше отклоняют его.

На рис. 3.11 показан опыт, иллюстрирующий возникновение момента электрических сил, действующих на диэлектрик в электрическом поле. На удлиненный диэлектрический образец, расположенный под некоторым углом к силовым линиям электростатического поля, действует момент сил, стремящийся развернуть этот образец вдоль поля. Диэлектрическая палочка, подвешенная за середину внутри плоского конденсатора, разворачивается перпендикулярно его пластинам после подачи на них высокого напряжения от электростатической машины. Появление вращающего момента обусловлено взаимодействием поляризовавшейся палочки с электрическим полем конденсатора.

000112

Рис. 3.11. Момент электрических сил, действующих на диэлектрик в электрическом поле

В случае неоднородного поля на рассматриваемый диполь будет действовать еще и равнодействующая сила Fpaвн, стремящаяся его сдвинуть. Мы рассмотрим здесь частный случай. Направим ось х вдоль поля Е. Пусть диполь под действием поля уже повернулся вдоль силовой линии, так что отрицательный заряд находится в точке с координатой x, а положительный заряд расположен в точке с координатой х + l. Представим себе, что величина напряженности поля зависит от координаты х. Тогда равнодействующая сила Fpaвн равна

702clip image001

Такой же результат может быть получен из общего соотношения

703clip image001

где энергия П определена в (3.8). Если Е увеличивается с ростом x, то

704clip image001

и проекция 705clip image001равнодействующей силы положительна. Это значит, что она стремиться втянуть диполь в область, где напряженность поля больше. Этим объясняется известный эффект, когда нейтральные кусочки бумаги притягиваются к наэлектризованной расческе. В плоском конденсаторе с однородным полем они остались бы неподвижными.

Рассмотрим несколько опытов, иллюстрирующих возникновение силы, действующей на диэлектрик, помещенный в неоднородное электрическое поле.

На рис. 3.12 показано втягивание диэлектрика в пространство между обкладками плоского конденсатора. В неоднородном электростатическом поле на диэлектрик действуют силы, втягивающие его в область более сильного поля.

000113

Рис. 3.12. Втягивание жидкого диэлектрика в плоский конденсатор

Это демонстрируется при помощи прозрачного сосуда, в который помещен плоский конденсатор, и налито некоторое количество жидкого диэлектрика — керосина (рис.3.13). Конденсатор присоединен к высоковольтному источнику питания — электростатической машине. При ее работе на нижнем краю конденсатора, в области неоднородного поля, на керосин действует сила, втягивающая его в пространство между пластинами. Поэтому уровень керосина внутри конденсатора устанавливается выше, чем снаружи. После выключения поля уровень керосина между пластинами падает до его уровня в сосуде.

000114

Рис. 3.13. Втягивание керосина в пространство между обкладками плоского конденсатора

В реальных веществах нечасто встречаются диполи, образованные только двумя зарядами. Обычно мы имеем дело с более сложными системами. Но понятие электрического дипольного момента применимо и к системам со многими зарядами. В этом случае дипольный момент определяется как

706clip image001

где 26clip image012, 34clip image013— величина заряда с номером i и радиус-вектор, определяющий его местоположение, соответственно. В случае двух зарядов 707clip image001мы приходим к прежнему выражению

25clip image014

Пусть наша система зарядов электрически нейтральна. В ней есть положительные заряды, величины которых и местоположения мы обозначим индексом «+». Индексом «–» мы снабдим абсолютные величины отрицательных зарядов и их радиус-векторы. Тогда выражение (3.10) может быть записано в виде

708clip image001

В (3.11) в первом слагаемом суммирование ведется по всем положительным зарядам, а во втором — по всем отрицательным зарядам системы.

Электрическая нейтральность системы означает равенство полного положительного заряда и суммы абсолютных величин всех отрицательных зарядов

709clip image001

Введем теперь понятие «центр зарядов» — положительных R + и отрицательных R

710clip image001

Выражения (3.13) аналогичны формулам для центра масс в механике, и потому мы назвали их центрами положительных и отрицательных зарядов, соответственно. С этими обозначениями и с учетом соотношения (3.12) мы записываем электрический дипольный момент (3.11) системы зарядов в виде

000115

где l-вектор, проведенный из центра отрицательных зарядов в центр положительных зарядов. Смысл нашего упражнения заключается в демонстрации, что любую электрически нейтральную систему зарядов можно представить как некий эквивалентный диполь.

Дополнительная информация

Источник

Учебники

Журнал «Квант»

Общие

Варламов А.А. Электрический диполь и его электрический момент //Квант. — 1985. — № 11. — С. 21-23.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Содержание

В большинстве своем нас окружают электрически нейтральные тела. Однако утверждать, что они не принимают никакого участия в электрических взаимодействиях, было бы неправильно. Достаточно вспомнить, например, что два заряда, помещенные в какой-нибудь диэлектрик, взаимодействуют слабее, чем в вакууме. Причиной тому — молекулы диэлектрика. Хотя диэлектрик состоит из нейтральных молекул, они способны создать собственное электрическое поле, которое и ослабляет электрическое взаимодействие зарядов.

Рассмотрим простейший пример электрически нейтральной системы — электрический диполь. Так называют совокупность двух равных по модулю, но противоположных по знаку точечных электрических зарядов ±q, находящихся на некотором расстоянии l друг от друга (рис. 1).

Img Kvant 1985 11 001

Поле диполя

Электрическое поле диполя можно найти в любой интересующей нас точке, опираясь на принцип суперпозиции («Физика 9», § 42). Сделаем это, например, для точки А (рис. 2).

Img Kvant 1985 11 002

Напряженность поля в этой точке равна векторной сумме напряженностей, создаваемых точечными зарядами +q и —q:

где r — расстояние от середины диполя до точки А.

На больших расстояниях, когда r >> l получаем

где р = ql называется электрическим моментом диполя. Говоря точнее, ql — это модуль дипольного электрического момента \(

\vec p\), а направлен этот вектор от отрицательного заряда к положительному. Электрический момент — основная характеристика диполя. В данном случае он определяет электрическое поле диполя на больших расстояниях от него.

Как видно из последнего выражения, вдали от диполя напряженность поля убывает с расстоянием как \(

\frac<1>\), то есть быстрее, чем поле точечного заряда (пропорциональное \(

\frac<1>\)). Это справедливо не только для точек, которые лежат на линии, проходящей через заряды +q и —q, но и для любых других точек, достаточно удаленных от диполя.

Диполь в электрическом поле

Посмотрим, как ведет себя диполь, попав во внешнее электрическое поле. Сначала — в однородное поле с напряженностью \(

Img Kvant 1985 11 003

На заряды диполя действуют равные по модулю, но противоположные по направлению силы \(

-q \vec E\), которые стремятся развернуть диполь. Относительно оси, проходящей через центр диполя (точку О) и перпендикулярной плоскости чертежа, каждая сила создает вращающий момент, равный произведению модуля силы на соответствующее плечо (см. рис. 3)\[

qE \cdot \frac <2>\sin \alpha\].

Суммарный вращающий момент будет равен

Таким образом, при заданных значениях Е и α вращающий момент М определяется величиной дипольного момента р.

Под действием вращающего момента диполь будет поворачиваться, пока не займет положение, изображенное на рисунке 3 штриховой линией. В этом положении равны нулю как сумма сил, так и сумма моментов сил, действующих на диполь. Это означает, что диполь находится в равновесии. При этом вектор электрического момента диполя сонаправлен с вектором напряженности поля.

Следовательно, в однородном внешнем электрическом поле диполь поворачивается и располагается так, чтобы его дипольный момент был ориентирован по полю. Заметим, что такое положение является положением его устойчивого равновесия.

Пусть теперь диполь находится в неоднородном внешнем поле. Разумеется, и здесь возникает вращающий момент, разворачивающий диполь вдоль поля (рис. 4). Но в этом случае на заряды действуют неодинаковые но модулю силы, равнодействующая которых отлична от нуля. Поэтому диполь будет еще и перемещаться поступательно, втягиваясь в область более сильного поля (убедитесь в этом самостоятельно).

Img Kvant 1985 11 004

Диполи в природе

Img Kvant 1985 11 005

Есть также вещества, у которых молекулы в обычных условиях диполями не являются, поскольку центры положительных и отрицательных зарядов в них совпадают. Но во внешнем электрическом поле заряды противоположных знаков несколько смещаются относительно друг друга и молекулы становятся электрическими диполями.

Заметим, что именно благодаря существованию диполей происходит такое важное физическое явление, как поляризация диэлектриков («Физика 9», § 47). Интересно, что весь поляризованный диэлектрик ведет себя подобно диполю. Движение такого «диполя» в неоднородном электрическом поле было исторически первым замеченным людьми электрическим явлением (вспомните притяжение наэлектризованным телом легких предметов).

Источник

Электростатический диполь. Электростатическое поле. Напряженность

Electric dipole. Electrostatic field strength

Электрическое поле, которое окружает заряд, это реальность, независящая от нашего желания что-либо изменить и как-то повлиять на это. Отсюда можно сделать вывод, что электрическое поле является одной из форм существования материи, так же как и вещество.

Электрическое поле зарядов, находящихся в состоянии покоя, называют электростатическим. Чтобы обнаружить электростатическое поле определенного заряда нужно внести в его поле другой заряд, на который будет действовать определенная сила в соответствии с законом Кулона. Однако без наличия второго заряда электростатическое поле первого заряда существует, но никак себя не проявляет.

Напряженностью Е характеризуют электростатическое поле. Напряженность в некоторой точке электрического поля – физическая величина, которая равна силе, действующей на помещенный в определенную точку поля единичный положительный покоящийся заряд, и направленная в сторону действия силы.

Если в электрическое поле, создаваемое зарядом q, внести «пробный» положительный точечный заряд qпр, то по закону Кулона на него будет действовать сила:

Force acting on a test positive point charge

Если в одну точку поля помещать различные пробные заряды q / пр, q // пр и так далее, то на каждый из них будут действовать различные силы, пропорциональные величине заряда. Отношение F/qпр для всех зарядов, вносимых в поле, будет идентичным, а также будет зависеть лишь от q и r, определяющих электрическое поле в данной точке. Данную величину можно выразить формулой:

Electric field strength

Если предположить, что qпр = 1, то E = F. Отсюда делаем вывод, что напряженность электрического поля является его силовой характеристикой. Из формулы (2) с учетом выражения кулоновской силы (1) следует:

The electric field strength with allowance for Coulomb forces and in vector form

Из формулы (2) видно, что за единицу напряженности принимается напряженность в определенной точке поля, где на единицу заряда будет действовать единица силы. Поэтому в системе СГС единицей напряженности является дин/СГСq, а в системе СИ будет Н/Кл. Соотношение между приведенными единицами называют абсолютной электростатической единицей напряженности (СГСЕ):

Absolute electrostatic tension unit

Вектор напряженности направлен от заряда вдоль радиуса при образующем поле положительном заряде q+, а при отрицательном – q – по направлению к заряду вдоль радиуса.

Если электрическое поле образовано несколькими зарядами, то силы, которые будут действовать на пробный заряд, складываются по правилу сложения векторов. Поэтому напряженность системы, состоящей из нескольких зарядов, в данной точке поля будет равна векторной сумме напряженностей каждого заряда в отдельности:

Principle of superposition

Данное явление носит название принцип суперпозиции (наложения) электрических полей.

Напряженность в любой точке электрического поля двух точечных зарядов – q2 и +q1 можно найти использовав принцип суперпозиции:

Determination of the electric field strength by the superposition principle

По правилу параллелограмма будет происходить сложение векторов Е1 и Е2. Направление результирующего вектора Е определяется построением, а его абсолютная величина может быть вычислена с использованием формулы ниже:

Absolute magnitude of the tension vector

Где α – угол между векторами Е1 и Е2.

Давайте рассмотрим электрическое поле, которое создает диполь. Электрический диполь – это система равных по величине (q = q1 = q2), но противоположных по знаку зарядов, расстояние между которыми очень мало, если сравнивать с расстоянием до рассматриваемых точек электрического поля.

Электрический дипольный момент p, являющийся основной характеристикой диполя и определяемый как вектор, направленный от отрицательного заряда к положительному, и равный произведению плеча диполя l на заряд q:

The electric dipole moment

Также вектором является плечо диполя l, направленным от отрицательного заряда к положительному, и определяет расстояние между зарядами. Линия, которая проходит через оба заряда, носит название – ось диполя.

Давайте определим напряженность электрического поля в точке, которая лежит на оси диполя по середине (рисунок ниже а)):

Determination of the electric dipole

The resultant electric field strength for two differently directed stress vectors

Где r – расстояние между точкой, которая лежит на оси диполя и в которой происходит определение напряженности, и средней точкой диполя.

В случае r>>l, величиной (l/2) в знаменателе можно пренебречь, тогда получим следующее соотношение:

The resulting strength of the electric field with two differently directed stress vectors simplifies the recording after neglecting the condition

Где p – момент электрический диполя.

Данная формула в системе СГС примет вид:

The resultant electric field strength for two differently directed stress vectors in the GHS system

Теперь нужно вычислить напряженность электрического поля в точке С (рисунок выше б)), лежащей на перпендикуляре, восстановленном из средней точки диполя.

Так как r1 = r2, то будет иметь место равенство:

The electric field strength at a point lying on a perpendicular

В точке С вектор результирующей напряженности по абсолютной величине будет равен:

At point C the vector of the resultant intensity in absolute value will be equal to

Так как r>>l, то можно считать r1 ≈ r, тогда представленную выше формулу можно записать в другом виде:

At point C the vector of the resultant intensity in absolute value is the simplified formula

Напряженность диполя в произвольной точке можно определить по формуле:

The dipole voltage at an arbitrary point of the formula

Где α – угол между плечом диполя l и радиус-вектором r, r – расстояние от точки, в которой определяется напряженность поля, до центра диполя, р – электрический момент диполя.

Пример

Determination of the electric field strength at a point

Необходимо определить напряженность электрического поля в точке А, которая расположена на перпендикуляре, восстановленном в центре отрезка, который соединяет заряды, на расстоянии h = 4 см от этого отрезка. Также нужно определить напряженность и в точке В, находящейся на середине отрезка, который соединяет заряды.

Решение

По принципу суперпозиции (наложением полей) определяется напряженность поля Е. Таким образом, векторной (геометрической) суммой определяется Е, создаваемых каждым зарядом в отдельности: Е = Е1 + Е2.

Напряженность электрического поля первого точечного заряда равна:

The field strength of the first and second point charges

Где q1 и q2 – заряды, образующие электрическое поле; r – расстояние от точки, в которой вычисляется напряженность, до заряда; ε0 – электрическая постоянная; ε – относительная диэлектрическая проницаемость среды.

Для определения напряженности в точке В сначала нужно построить векторы напряженности электрических полей от каждого заряда. Поскольку заряды положительны, то векторы Е / и Е // будут направлены от точки В в разные стороны. По условию q1 = q2:

The field strength at point B

Это значит, что в средине отрезка напряженность поля равна нулю.

В точке А необходимо произвести геометрическое сложение векторов Е1 и Е2. В точке А напряженность будет равна:

Источник

Первый строительный портал
Adblock
detector