электрическое поле электростатическое поле разница

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки

Поле электростатическое и электрическое

no avatar

2. При движении ионов в проводнике второго рода (в самом объёме раствора) возникает магнитное поле или же только вокруг проводника? (В приближении если говорить)

Заслуженный участник
file.php?avatar=4029 1459547246

Электрическое поле является электростатическим, только когда все заряды неподвижны, и нет переменных по времени электрических и магнитных полей.

Ни в чём, кроме того, что быстро закончится.

При любом протекании тока возникает магнитное поле везде в объёме (кроме сверхпроводников). Это просто видно из уравнения Максвелла 42f09ad1691e7037d99371b3cdc2f84782если взять контур внутри проводника, охватывающий часть линий тока. Дальше, для контура, охватывающего целиком проводник, циркуляция достигает максимального значения, и дальше не меняется, а магнитное поле спадает (поскольку длина контура растёт). Для круглого однородного контура магнитное поле нарастает до его поверхности, на ней максимально, и дальше спадает.

Эта поляризация будет происходить всегда, при любой величине зарядов.

no avatar

Последний раз редактировалось rambler87 05.03.2014, 12:56, всего редактировалось 1 раз.

Ещё такой, надеюсь пока последний, мысленный эксперимент.
Имеем две установки:
I. катод | проводник второго рода | анод
II. (-) стат.заряд | диэл. | проводник второго рода | диэл. | (+) стат. заряд

В первом случае через проводник второго рода потечёт постоянный ток
Во втором случае мы будем иметь временный ток пока происходит поляризация проводника да? То есть можно подобрать заряды статические так, чтобы никакой разницы между физическим состоянием проводника второго рода в первом и втором экспериментах не было. Пусть даже это продлится очень небольшой промежуток времени

Заслуженный участник
file.php?avatar=4029 1459547246

И наконец, всё то, о чём вы спрашиваете, совершенно не зависит от того, проводник какого рода обсуждается. Можно мысленно заменить электролит на металл, и получить тот же самый ответ, и он будет правильным.

no avatar

Последний раз редактировалось rambler87 05.03.2014, 14:27, всего редактировалось 3 раз(а).

На самом деле мне этот мысленный эксперимент был нужен постольку, поскольку наличие различного рода электродных процессов усложняет картину.

Заслуженный участник
file.php?avatar=4029 1459547246

Ну, это уже никак не явления теории электричества, это сложные последствия биологического уровня.

На самом деле мне этот мысленный эксперимент был нужен постольку, поскольку наличие различного рода электродных процессов усложняет картину.

spacer

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей

Источник

Что такое электрическое поле, его классификация и характеристики

Нас окружает материальный мир. Материю мы воспринимаем с помощью зрения и других органов чувств. Отдельным видом материи является электрическое поле, которое можно выявить только через его влияние на заряженные тела или с помощью приборов. Оно порождает магнитные поля и взаимодействует с ними. Эти взаимодействия нашли широкое практическое применение.

Определение

Электрическое поле неразрывно связано с магнитным полем, и возникает в результате его изменения. Эти два вида материи являются компонентами электромагнитных полей, заполняющих пространство вокруг заряженных частиц или заряженных тел.

Таким образом, данный термин означает особый вид материи, обладающий собственной энергией, являющийся составным компонентом векторного электромагнитного поля. У электрического поля нет границ, однако его силовое воздействие стремится к нулю, при удалении от источника – заряженного тела или точечных зарядов [1].

Важным свойством полевой формы материи является способность электрического поля поддерживать упорядоченное перемещение носителей зарядов.

opredelenie elektricheskogo polya Рис. 1. Определение понятия «электрическое поле»

Энергия электрического поля подчиняется действию закона сохранения. Её можно преобразовать в другие виды или направить на выполнение работы.

Силовой характеристикой полей выступает их напряжённость – векторная величина, численное значение которой определяется как отношение силы, действующей на пробный положительный заряд, к величине этого заряда.

Характерные физические свойства:

Оно всегда окружает неподвижные статичные (не меняющиеся со временем) заряды, поэтому получило название – электростатическое. Опыты подтверждают, что в электростатическом поле действуют такие же силы, как и в электрическом.

Электростатическое взаимодействие поля на заряженные тела можно наблюдать при поднесении наэлектризованной эбонитовой палочки к мелким предметам. В зависимости от полярности наэлектризованных частиц, они будут либо притягиваться, либо отталкиваться от палочки.

Сильные электростатические поля образуются вблизи мощных электрических разрядов. На поверхности проводника, оказавшегося в зоне действия разряда, происходит перераспределение зарядов.

Вследствие распределения зарядов проводник становится заряженным, что является признаком влияния электрического поля.

Классификация

Электрические поля бывают двух видов: однородные и неоднородные.

Однородное электрическое поле

Состояние поля определяется пространственным расположением линий напряжённости. Если векторы напряжённости идентичны по модулю и они при этом сонаправлены во всех точках пространства, то электрическое поле – однородно. В нём линии напряжённости расположены параллельно.

В качестве примера является электрическое поле, образованное разноимёнными зарядами на участке плоских металлических пластин (см. рис. 2).

primer odnorodnosti Рис. 2. Пример однородности

Неоднородное электрическое поле

Чаще встречаются поля, напряжённости которых в разных точках отличаются. Линии напряжённости у них имеют сложную конфигурацию. Простейшим примером неоднородности является электрический диполь, то есть система из двух разноимённых зарядов, влияющих друг на друга (см. рис. 3). Несмотря на то, что векторы напряжённости электрического диполя образуют красивые линии, но поскольку они не равны, то такое поле неоднородно. Более сложную конфигурацию имеют вихревые поля (рис 4). Их неоднородность очевидна.

elektricheskij dipol Рис. 3. Электрический диполь vihrevye polya Рис. 4. Вихревые поля

Характеристики

Основными характеристиками являются:

Потенциал

Термин означает отношение потенциальной энергии W, которой обладает пробный заряд q′ в данной точке к его величине. Выражение φ =W/q′. называется потенциалом электрического поля в этой точке.

Другими словами: количество накопленной энергии, которая потенциально может быть потрачена на выполнение работы, направленной на перемещение единичного заряда в бесконечность, или в другую точку с условно нулевой энергией, называется потенциалом рассматриваемого электрического поля в данной точке.

Энергия поля учитывается по отношению к данной точке. Её ещё называют потенциалом в данной точке. Общий потенциал системы равен сумме потенциалов отдельных зарядов. Это одна из важнейших характеристик поля. Потенциал можно сравнить с энергией сжатой пружины, которая при высвобождении способна выполнить определённую работу.

Единица измерения потенциала – 1 вольт. При бесконечном удалении точки от наэлектризованного тела, потенциал в этой точке уменьшается до 0: φ=0.

Напряжённость поля

Достоверно известно, что электрическое поле отдельно взятого заряда q действует с определённой силой F на точечный пробный заряд, независимо от того, на каком расстоянии он находится. Сила, действующая на изолированный положительный пробный заряд, называется напряжённостью и обозначается символом E.

Напряжённость – векторная величина. Значение модуля вектора напряжённости: E=F/q′.

Линиями напряжённости электрического поля (известные как силовые линии), называются касательные, которые в точках касания совпадают с ориентацией векторов напряжённости. Плотность силовых линий определяет величину напряжённости.

elektricheskoe pole polozhitelnogo i otricatelnogo vektora napryazhyonnosti Рис. 5. Электрическое поле положительного и отрицательного вектора напряжённости

Напряженность вокруг точечного заряда Q на расстоянии r от него, определяется по закону Кулона: E = 14πε0⋅Qr2. Такие поля называют кулоновскими.

Векторы напряженности положительного точечного заряда направлены от него, а отрицательного – до центра (к заряду). Направления векторов кулоновского поля видно на рис. 6.

napravlenie linij napryazhyonnosti polozhitelnyh i otricatelnyh zaryadovРис. 6. Направление линий напряжённости положительных и отрицательных зарядов

Для кулоновских полей справедлив принцип суперпозиции. Суть принципа в следующем:вектор напряжённости нескольких зарядов может быть представлен в виде геометрической суммы напряжённостей, создаваемых каждым отдельно взятым зарядом, входящих в эту систему.

Для общего случая распределения зарядов имеем:

obshhij sluchaj raspredeleniya zaryadov

Линии напряжённости схематически изображены на рисунке 7. На картинке видно линии, характерные для полей:

Напряжение

Поскольку силы электрического поля способны выполнять работу по перемещению носителей элементарных зарядов, то наличие поля является условием для существования электрического тока. Электроны и другие элементарные заряды всегда двигаются от точки, обладающей более высоким потенциалом, к точке с низшим потенциалом. При этом часть энергии расходуется на выполнение работы по перемещению.

Для поддержания постоянного тока (упорядоченного движения носителей элементарных зарядов) необходимо на концах проводника поддерживать разницу потенциалов, которую ещё называют напряжением. Чем больше эта разница, тем активнее выполняется работа, тем мощнее ток на этом участке. Функции по поддержанию разницы потенциалов возложены на источники тока.

Методы обнаружения

Органы чувств человека не воспринимают электрических полей. Поэтому мы не можем их увидеть, попробовать на вкус или определить по запаху. Единственное, что может ощутить человек – это выпрямление волос вдоль линий напряжённости. Наличие слабых воздействий мы просто не замечаем.

Обнаружить их можно через воздействие на мелкие кусочки бумаги, бузиновые шарики и т.п. Электрическое поле воздействует на электроскоп – его лепестки реагируют на такие воздействия.

Очень простой и эффективный метод обнаружения с помощью стрелки компаса. Она всегда располагается вдоль линий напряжённости.

Существуют очень чувствительные электронные приборы, с лёгкостью определяющие наличие электростатических полей.

Методы расчета электрического поля

Для расчётов параметров используются различные аналитические или численные методы:

Выбор конкретного метода зависит от сложности задачи, но в основном используются численные методы, приведённые в списке.

Использование

Изучение свойств электрического поля открыло перед человечеством огромные возможности. Способность поля перемещать электроны в проводнике позволила создавать источники тока.

На свойствах электрических полей создано различное оборудование, применяемое в медицине, химической промышленности, в электротехнике. Разрабатываются приборы, применяемые в сфере беспроводной передачи энергии к потребителю. Примером могут послужить устройства беспроводной зарядки гаджетов. Это пока только первые шаги на пути к передачи электричества на большие расстояния.

Сегодня, благодаря знаниям о свойствах полевой формы материи, разработаны уникальные фильтры для очистки воды. Этот способ оказался дешевле, чем использование традиционных сменных картриджей.

К сожалению, иногда приходится нейтрализовать силы полей. Обладая способностью электризации предметов, оказавшихся в зоне действия, электрические поля создают серьёзные препятствия для нормальной работы радиоэлектронной аппаратуры. Накопленное статическое электричество часто является причиной выхода из строя интегральных микросхем и полевых транзисторов.

Источник

Электрическое поле, электростатическая индукция, емкость и конденсаторы

00e4781e80e2f6b23e7f6a9f530f2f4d

Понятие об электрическом поле

Известно, что в пространстве, окружающем электрические заряды, действуют силы электрического поля. Многочисленные опыты над заряженными телами полностью подтверждают это. Пространство, окружающее любое заряженное тело, является электрическим полем, в котором действуют электрические силы.

Направление сил поля называют силовыми линиями электрического поля. Поэтому условно считают, что электрическое поле есть совокупность силовых линий.

Силовые линии поля обладают определенными свойствами:

силовые линии выходят всегда из положительно заряженного тела, а входят в тело, заряженное отрицательно;

они выходят во все стороны перпендикулярно поверхности заряженного тела и перпендикулярно входят в него;

силовые линии двух одноименно заряженных тел как бы отталкиваются одна от другой, а разноименно заряженных — притягиваются.

Силовые линии электрического поля всегда разомкнуты, так как они обрываются на поверхности заряженных, тел. Электрически заряженные тела взаимодействуют друг с другом: разноименно заряженные притягиваются, а одноименно заряженные отталкиваются.

1504430805 1

Электрически заряженные тела (частицы) с зарядами q1 и q2 взаимодействуют друг с другом с силой F, которая является векторной величиной и измеряется в ньютонах (Н). При разноименных зарядах тела притягиваются друг к другу, а при одноименных – отталкиваются.

Сила притяжения или отталкивания зависит от величины зарядов тел и от расстояния между ними.

Заряженные тела называются точечными, если их линейные размеры малы по сравнению с расстоянием r между телами. Величина силы их взаимодействия F зависит от величины зарядов q1 и q2, расстояния r между ними и среды, в которой находятся электрические заряды.

Если в пространстве между телами будет не воздух, а какой-нибудь другой диэлектрик, т. е. непроводник электричества, то сила взаимодействия между телами уменьшится.

Величина, характеризующая свойства диэлектрика и показывающая, во сколько раз сила взаимодействия между зарядами увеличится, если данный диэлектрик заменить воздухом, называется относительной диэлектрической проницаемостью данного диэлектрика.

1255801988 1

Если проводящему телу А шарообразной формы, изолированному от окружающих предметов, сообщить отрицательный электрический заряд, т. е. создать в нем избыток электронов, то этот заряд равномерно распределится по поверхности тела. Так происходит потому, что электроны, отталкиваясь один от другого, стремятся выйти на поверхность тела.

1255802029 2

Явление электростатической индукции

Очевидно, что такое наэлектризованное состояние тела является вынужденным и поддерживается исключительно действием сил электрического поля, созданного телом А.

Если проделать то же самое, когда тело А будет заряжено положительно, то свободные электроны с руки человека устремятся к телу Б, нейтрализуют его положительный заряд, и тело Б окажется заряженным отрицательно.

Чем выше будет степень электризации тела А, т. е. чем выше его потенциал, тем до большего потенциала можно наэлектризовать посредством электростатической индукции тело Б.

Таким образом, мы пришли к выводу, что явление электростатической индукции дает возможность при определенных условиях накапливать электричество на поверхности проводящих тел.

1255802327 8

Каждое тело можно зарядить до известного предела, т. е. до определенного потенциала; повышение потенциала сверх предельного влечет за собой разряд тела в окружающую атмосферу. Для разных тел необходимо различное количество электричества, чтобы довести их до одного и того же потенциала. Иначе говоря, различные тела вмещают различное количество электричества, т. е. обладают разной электрической емкостью (или просто емкостью).

Электрической емкостью называется способность тела вмещать в себе определенное количество электричества, повышая при этом свой потенциал до определенной величины. Чем больше поверхность тела, тем больший электрический заряд может вместить в себя это тело.

Если тело имеет форму шара, то емкость его находится в прямой зависимости от радиуса шара. Емкость измеряют фарадами.

1255801945 4

Конденсатор состоит из двух металлических пластин (обкладок), изолированных одна от другой прослойкой воздуха или каким-либо другим диэлектриком (слюдой, бумагой и т. д.).

Если одной из пластин сообщить положительный заряд, а другой — отрицательный, т. е. противоположно зарядить их, то заряды пластин, взаимно притягиваясь, будут удерживаться на пластинах. Это позволяет сосредоточить на пластинах гораздо большее количество электричества, чем если бы заряжать их в удалении одна от другой.

Емкость конденсатора равна:

Из этой формулы видно, что с увеличением площади пластин емкость конденсатора увеличивается, а с увеличением расстояния между ними уменьшается.

Поясним эту зависимость. Чем больше площадь пластин, тем большее количество электричества они способны вместить, а следовательно, и емкость конденсатора будет большей.

1255801969 1

При уменьшении расстояния между пластинами возрастает взаимное влияние (индукция) между их зарядами, что позволяет сосредоточить на пластинах большее количество электричества, а следовательно, увеличить емкость конденсатора.

Таким образом, если мы хотим получить конденсатор большой емкости, мы должны брать пластины большой площади и изолировать их между собой тонким слоем диэлектрика.

Формула показывает также, что с увеличением диэлектрической проницаемости диэлектрика емкость конденсатора увеличивается.

Следовательно, конденсаторы, равные по своим геометрическим размерам, но содержащие в себе различные диэлектрики, имеют различную емкость.

Если, например, взять конденсатор с воздушным диэлектриком, диэлектрическая проницаемость которого равна единице, и поместить между его пластинами слюду с диэлектрической проницаемостью 5, то емкость конденсатора возрастет в 5 раз.

Вот почему для получения больших емкостей в качестве диэлектриков используют такие материалы, как слюда, бумага, пропитанная парафином, и др., диэлектрическая проницаемость которых значительно больше, чем у воздуха.

В соответствии с этим различают следующие типы конденсаторов: воздушные, с твердым диэлектриком и с жидким диэлектриком.

Заряд и разряд конденсатора. Ток смещения

Включим конденсатор постоянной емкости в цепь. При установке переключателя на контакт а конденсатор будет включен в цепь батареи. Стрелка миллиамперметра в момент включения конденсатора в цепь отклонится и затем станет на нуль.

1460560179 1

Конденсатор в цепи постоянного тока

Следовательно, по цепи прошел электрический ток в определенном направлении. Если теперь переключатель поставить на контакт б (т. е. замкнуть обкладки), то стрелка миллиамперметра отклонится в другую сторону и опять станет на нуль. Следовательно, по цепи также прошел ток, но уже другого направления. Разберем это явление.

Когда конденсатор был подключен к батарее, он заряжался, т. е. его обкладки получали одна положительный, а другая отрицательный заряды. Заряд продолжался до тех пор, пока разность потенциалов между обкладками конденсатора не сравнялась с напряжением батареи. Миллиамперметр, включенный последовательно в цепь, показал ток заряда конденсатора, который прекратился, как только зарядился конденсатор.

1255801983 2

Когда же конденсатор отключили от батареи, он остался заряженным, и разность потенциалов между его обкладками была равна напряжению батареи.

Однако, как только замкнули конденсатор, он начал разряжаться, и по цепи пошел ток разряда, но уже в направлении, обратном току заряда. Это продолжалось до тех пор, пока не исчезла разность потенциалов между обкладками, т. е. пока конденсатор не разрядился.

Следовательно, если конденсатор включить в цепь постоянного тока, то в цепи пойдет ток только в момент заряда конденсатора, а в дальнейшем тока в цепи не будет, так как цепь будет разорвана диэлектриком конденсатора.

Поэтому говорят, что «конденсатор не пропускает постоянного тока».

Количество электричества (Q), которое можно сосредоточить на пластинах конденсатора, его емкость (С) и величина подводимого к конденсатору напряжения (U) связаны следующей зависимостью: Q = CU.

Эта формула показывает, что чем больше емкость конденсатора, тем большее количество электричества можно сосредоточить на нем, не повышая сильно напряжения на его обкладках.

Повышение напряжения при неизменной емкости также приводит к увеличению запасаемого конденсатором количества электричества. Однако если к обкладкам конденсатора подвести большое напряжение, то конденсатор может быть «пробит», т. е. под действием этого напряжения диэлектрик в каком-то месте разрушится и пропустит через себя ток. Конденсатор при этом прекратит свое действие. Чтобы избежать порчи конденсаторов, на них указывают величину допустимого рабочего напряжения.

Явление поляризации диэлектрика

1255801955 7Разберем теперь, что происходит в диэлектрике при заряде и разряде конденсатора и почему от диэлектрической проницаемости диэлектрика зависит величина емкости?

Ответ на этот вопрос дает нам электронная теория строения вещества.

В диэлектрике, как во всяком изоляторе, нет свободных электронов. В атомах диэлектрика электроны прочно связаны с ядром, поэтому напряжение, приложенное к пластинам конденсатора, не вызывает в его диэлектрике направленного движения электронов, т. е. электрического тока, как это бывает в проводниках.

Однако под действием сил электрического поля, созданного заряженными пластинами, электроны, вращающиеся вокруг ядра атома, смещаются в сторону положительно заряженной пластины конденсатора. Атом при этом как бы вытягивается по направлению силовых линий поля. Такое состояние атомов диэлектрика называют поляризованным, а само явление — поляризацией диэлектрика.

При разряде конденсатора поляризованное состояние диэлектрика нарушается, т. е. пропадает вызванное поляризацией смещение электронов относительно ядра, и атомы приходят в свое обычное неполяризованное состояние. Установлено, что присутствие диэлектрика ослабляет поле между пластинами конденсатора.

Различные диэлектрики под действием одного и того же электрического поля поляризуются в различной степени. Чем легче поляризуется диэлектрик, тем он больше ослабляет поле. Поляризация воздуха, например, приводит к меньшему ослаблению поля, чем поляризация любого другого диэлектрика.

Но ослабление поля между пластинами конденсатора позволяет сосредоточить на них большее количество электричества Q при одном и том же напряжении U, что в свою очередь, приводит к увеличению емкости конденсатора, так как С= Q / U.

Итак, мы пришли к выводу — чем больше диэлектрическая проницаемость диэлектрика, тем большей емкостью обладает конденсатор, содержащий в своем составе этот диэлектрик.

Наличие этого тока смещения приводит к тому, что конденсатор, подключенный к источнику переменного тока, становится его проводником.

Основные характеристики электрического поля и основные электрические характеристики сред (основные термины и определения)

Напряженность электрического поля

Векторная величина, характеризующая силовое действие электрического поля на электрически заряженные тела и частицы, равная пределу отношения силы, с которой электрическое поле действует на неподвижное точечное заряженное тело, внесенное в рассматриваемую точку поля, к заряду этого тела, когда этот заряд стремится к нулю, и направление которой принимается совпадающим с направлением силы, действующей на положительно заряженное точечное тело.

Линия напряженности электрического поля

Линия, в каждой точке которой касательная к ней совпадает с направлением вектора напряженности электрического поля.

Состояние вещества, характеризуемое тем, что электрический момент данного объема этого вещества имеет значение, отличное от нуля.

Свойство вещества проводить под действием не изменяющегося во времени электрического поля не изменяющийся во времени электрический ток.

Вещество, основным электрическим свойством которого является способность поляризоваться в электрическом поле и в котором возможно длительное существование электростатического поля.

Вещество, основным электрическим свойством которого является электропроводность.

Тело из проводящего вещества.

Полупроводящее вещество (полупроводник)

Вещество, которое является, по своей электропроводности, промежуточным между проводящим веществом и диэлектриком и отличительными свойствами которого являются: резко выраженная зависимость его электропроводности от температуры; изменение его электропроводности при воздействиях электрического поля, света и других внешних факторов; существенная зависимость его электропроводности от количества и природы введенных примесей, дающая возможность усиления и выпрямления электрического тока, а также преобразования некоторых видов энергии в электрическую энергию.

Поляризованность (интенсивность поляризации)

Векторная величина, характеризующая степень электрической поляризации диэлектрика, равная пределу отношения электрического момента некоторого объема диэлектрика к этому объему, когда последний стремится к нулю.

Скалярная величина, характеризующая электрическое поле в пустоте, равная отношению суммарного электрического заряда, заключенного внутри некоторой замкнутой поверхности, к потоку вектора напряженности электрического поля сквозь эту поверхность в пустоте.

Абсолютная диэлектрическая восприимчивость

Скалярная величина, характеризующая свойство диэлектрика поляризоваться в электрическом столе, равная отношению величины поляризованности к величине напряженности электрического поля.

Отношение абсолютной диэлектрической восприимчивости в рассматриваемой точке диэлектрика к электрической постоянной.

Векторная величина, равная геометрической сумме напряженности электрического поля в рассматриваемой точке, умноженной на электрическую постоянную, и поляризованности в той же точке.

Абсолютная диэлектрическая проницаемость

Скалярная величина, характеризующая электрические свойства диэлектрика и равная отношению величины электрического смещения к величине напряженности электрического поля.

Отношение абсолютной диэлектрической проницаемости в рассматриваемой точке диэлектрика к электрической постоянной.

Линия электрического смещения

Линия, в каждой точке которой касательная к ней совпадает с направлением вектора электрического смещения.

Явление наведения электрических зарядов на проводящем теле под действием внешнего электростатического поля.

Стационарное электрическое поле

Электрическое поле не изменяющихся во времени электрических токов при условии неподвижности проводников с токами.

Потенциальное электрическое поле

Электрическое поле, в котором ротор вектора напряженности электрического поля всюду равен нулю.

Вихревое электрическое поле

Электрическое поле, в котором ротор вектора напряженности не везде равен нулю.

Разность электрических потенциалов двух точек

Скалярная величина, характеризующая потенциальное электрическое поле, равная пределу отношения работы сил этого поля, при переносе положительно заряженного точечного тела из одной данной точки поля в другую, к заряду этого тела, когда заряд тела стремится к нулю (иначе: равная линейному интегралу напряженности электрического поля от одной данной точки до другой).

Электрический потенциал в данной точке

Разность электрических потенциалов данной точки и другой, определенной, но произвольно выбранной точки.

Электрическая емкость уединенного проводника

Скалярная величина, характеризующая способность проводника накапливать электрический заряд, равная отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удаленной точки принят равным нулю.

Электрическая емкость между двумя уединенными проводниками

Скалярная величина, равная абсолютному значению отношения электрического заряда одного проводника к разности электрических потенциалов двух проводников, при условии, что эти проводники имеют одинаковые по величине, но противоположные по знаку заряды и что все другие проводники бесконечно удалены.

Система из двух разделенных диэлектриком проводников (обкладок), предназначенная для использования емкости между этими двумя проводниками.

Абсолютное значение отношения электрического заряда одной из обкладок конденсатора к разности потенциалов между ними при условии, что обкладки имеют одинаковые по величине к противоположные по знаку заряды.

Емкость между двумя проводниками, входящими в систему проводников (частичная емкость)

Абсолютное значение отношения электрического заряда одного из проводников, входящего в систему проводников, к разности потенциалов между ним и другим проводником, если все проводники, кроме последнего, имеют один и тот же потенциал; если в рассматриваемую систему проводников входит земля, то ее потенциал принимается равным нулю.

Стороннее электрическое поле

Поле, обусловленное тепловыми процессами, химическими реакциями, контактными явлениями, механическими силами и другими неэлектромагнитными (при макроскопическом рассмотрении) процессами; характеризуется силовым воздействием на заряженные частицы и тела, находящиеся в области, где это поле существует.

Индуктированное электрическое поле

Электрическое поле, возбуждаемое изменением во времени магнитного поля.

Электродвижущая сила Э. д. с.

Скалярная величина, характеризующая способность стороннего и индуктированного электрических полей вызывать электрический ток, равная линейному интегралу напряженности сторон- него и индуктированного электрических полей между двумя точками вдоль рассматриваемого пути, или вдоль рассматриваемого замкнутого контура.

Скалярная величина, равная линейному интегралу напряженности результирующего электрического поля (электростатического, стационарного, стороннего, индуктированного) между двумя точками вдоль рассматриваемого пути.

gb2

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Первый строительный портал
Adblock
detector