электрическое поле описывается двумя характеристиками

Электрическое поле описывается двумя характеристиками

132 дн. с момента
до конца учебного года

92

Электростатическое поле и его характеристики

Электростатическое поле существующий вокруг неподвижный заряженных тел, действует на заряд с некоторой силой, вблизи заряда – сильнее.
Электростатическое поле не изменяется во времени.
Силовой характеристикой электрического поля является напряженность1

Напряженностью электрического поля в данной точке называется векторная физическая величина, численно равная силе, действующей на единичный положительный заряд, помещенный в данную точку поля.

2

3

4

7

Силовыми линиями (линиями напряженности электрического поля) называют линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряженности в данной точке.

Силовые линии начинаются на положительном заряде и заканчиваются на отрицательном ( Силовые линии электростатических полей точечных зарядов. ).

6

Густота линий напряженности характеризует напряженность поля (чем плотнее располагаются линии, тем поле сильнее).

Электростатическое поле точечного заряда неоднородно (ближе к заряду поле сильнее).

Силовые линии электростатических полей бесконечных равномерно заряженных плоскостей.
Электростатическое поле бесконечных равномерно заряженных плоскостей однородно. Электрическое поле, напряженность во всех точках которого одинакова, называется однородным.

Источник

Электрическое поле и его характеристики

теория по физике 🧲 электростатика

Вокруг заряженных тел существует особая среда — электрическое поле. Именно это поле является посредником в передаче электрического взаимодействия.

Свойства электрического поля

Характеристики электрического поля

Напряженность численно равна электрической силе, действующей на единичный положительный заряд:

q 0 — пробный заряд.

Пример №1. Сила, действующая в поле на заряд в 20 мкКл, равна 4Н. Вычислить напряженность поля в этой точке.

20 мкКл = 20∙10 –6 Кл

Силовые линии — линии, касательные к которым совпадают с вектором напряженности.

Потенциальная энергия взаимодействия двух зарядов W (Дж) в вакууме:

Потенциальная энергия взаимодействия двух зарядов W (Дж) в среде:

Знак потенциальной энергии зависит от знаков заряженных тел:

Потенциал — энергетическая характеристика электрического поля. Обозначается как ϕ. Единица измерения — Вольт (В).

Численно потенциал равен отношению потенциальной энергии взаимодействия двух зарядов к единичному положительному заряду:

q 0 — пробный заряд.

Потенциал — скалярная физическая величина. Знак потенциала зависит от знака заряда, создающего поле. Отрицательный заряд создает отрицательный потенциал, и наоборот.

Значение потенциала зависит от выбора нулевого уровня для отсчета потенциальной энергии, а разность потенциалов — от выбора нулевого уровня не зависит.

Напряжение — разность потенциалов. Обозначается как U. Единица измерения — Вольт (В). Численно напряжение равно отношению работы электрических сил по перемещению заряда из точки 1 в точку 2:

Эквипотенциальные поверхности — поверхности, имеющие одинаковый потенциал. Они равноудалены от заряженных тел и обычно повторяют их форму. Эквипотенциальные поверхности перпендикулярны силовым линиям.

Пылинка, имеющая массу 10 −6 кг, влетела в однородное электрическое поле в направлении против его силовых линий с начальной скоростью 0,3 м/с и переместилась на расстояние 4 см. Каков заряд пылинки, если её скорость уменьшилась при этом на 0,2 м/с, а напряжённость поля 105 В/м?

Источник

Характеристики электрического поля

00e4781e80e2f6b23e7f6a9f530f2f4d

В статье описаны основные характеристики электрического поля: потенциал, напряжение и напряженность.

Что такое электрическое поле

1336571214 4Для того, чтобы создать электрическое поле, необходимо создать электрический заряд. Свойства пространства вокруг зарядов (заряженных тел) отличаются от свойств пространства, в котором нет зарядов. При этом свойства пространства при внесении в него электрического заряда изменяются не мгновенно: изменение начинается у заряда и с определенной скоростью распространяется от одной точки пространства к другой.

В пространстве, содержащем заряд, проявляются механические силы, действующие на другие заряды, внесенные в это пространство. Эти силы есть результат не непосредственного действия одного заряда на другой, а действия через качественно изменившуюся среду.

Заряд, находящийся в электрическом поле, движется в направлении силы, действующей на него со стороны поля. Состояние покоя такого заряда возможно лишь тогда, когда к заряду приложена какая-либо внешняя (сторонняя) сила, уравновешивающая силу электрического поля.

Как только нарушается равновесие между сторонней силой и силой поля, заряд снова приходит в движение. Направление его движения всегда совпадает с направлением большей силы.

Для наглядности электрическое поле принято изображать так называемыми силовыми линиями электрического поля. Эти линии совпадают с направлением сил, действующих в электрическом поле. При этом условились проводить столько линий, чтобы их число на каждый 1 см2 площадки, установленной перпендикулярно к линиям, было пропорционально силе поля в соответствующей точке.

За направление поля условно принято направление силы поля, действующей на положительный заряд, помещенный в данное поле. Положительный заряд отталкивается от положительных зарядов и притягивается к отрицательным. Следовательно, поле направлено от положительных зарядов к отрицательным.

Направление силовых линий обозначается на чертежах стрелками. Наукой доказано, что силовые линии электрического поля имеют начало и конец, т. е. они не замкнуты сами на себя. Исходя из принятого направления поля, устанавливаем, что силовые линии начинаются на положительных зарядах (положительно заряженных телах) и заканчиваются на отрицательных.

1336571216 1

Рис. 1. Примеры изображения электрического поля при помощи силовых линий: а — электрическое поле одиночного положительного заряда, б — электрическое поле одиночного отрицательного заряда, в — электрическое поле двух разноименных зарядов, г — электрическое поле двух одноименных зарядов

На рис. 1 показаны примеры электрического поля, изображенного при помощи силовых линий. Нужно помнить, что силовые линии электрического поля — это лишь способ графического изображения поля. Большего содержания в понятие силовой линии здесь не вкладывается.

Сила взаимодействия двух зарядов зависит от величины и взаимного расположения зарядов, а также от физических свойств окружающей их среды.

Для двух наэлектризованных физических тел, размеры которых пренебрежимо малы по сравнению с расстоянием между телами, хила взаимодействия математически определяется следующим образом:

1336571229 2

Приведенная формула читается так: сила взаимодействия между двумя точечными зарядами прямо пропорциональна произведению величин этих зарядов и обратно пропорциональна квадрату расстояния между ними (закон Кулона).

Потенциал электрического поля

Электрическое поле всегда сообщает движение заряду, если силы поля, действующие на заряд, не уравновешиваются какими-либо сторонними силами. Это говорит о том, что электрическое поле обладает потенциальной энергией, т. е. способностью совершать работу.

Перемещая заряд из одной точки пространства в другую, электрическое поле совершает работу, в результате чего запас потенциальной энергии поля уменьшается. Если заряд перемещается в электрическом поле под действием какой-либо сторонней силы, действующей навстречу силам поля, то работа совершается не силами электрического поля, а сторонними силами. В этом случае потенциальная энергия поля не только не уменьшается, а, наоборот, увеличивается.

Сущность этой величины состоит в следующем. Предположим, что положительный заряд находится за пределами рассматриваемого электрического поля. Это значит, что поле практически не действует на данный заряд. Пусть сторонняя сила вносит этот заряд в электрическое поле и, преодолевая сопротивление движению, оказываемое силами поля, переместит заряд в данную точку поля. Работа, совершаемая силой, а значит, и величина, на которую увеличилась потенциальная энергия поля, зависит всецело от свойств поля. Следовательно, эта работа может характеризовать энергию данного электрического поля.

Энергия электрического поля, отнесенная к единице положительного заряда, помещенного в данную точку поля, и называется потенциалом поля в данной его точке.

Из сказанного следует, что потенциал электрического поля в данной его точке численно равен работе, совершаемой сторонней силой при перемещении единицы положительного заряда из-за пределов поля в данную точку. Потенциал поля измеряется в вольтах (В). Если при переносе одного кулона электричества из-за пределов поля в данную точку сторонние силы совершили работу, равную одному джоулю, то потенциал в данной точке поля равен одному вольту: 1 вольт = 1 джоуль / 1 кулон

Напряжение электрического поля

Если нам известна эта работа, т. е. величина, на которую уменьшилась потенциальная энергия поля при перемещении положительного заряда q из точки 1 поля в точку 2, то легко найти напряжение между этими точками поля U1,2:

Напряжение между двумя точками равно одному вольту, если при переносе одного кулона электричества из одной точки поля в другую силы поля совершают работу, равную одному джоулю: 1 вольт = 1 джоуль / 1 кулон

Напряженность электрического поля

Из закона Кулона следует, что величина силы электрического поля данного заряда, действующей на помещенный в этом поле другой заряд, не во всех точках поля одинакова. Характеризовать электрическое поле в каждой его точке можно величиной силы, с которой оно действует на единичный положительный заряд, помещенный в данной точке.

gb2

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Два основных параметра потенциального электрического поля

Электрическим полем называют вид материи, посредством которой происходит взаимодействие электрических зарядов. Поле неподвижных зарядов называется электростатическим.

Свойства электрического поля:

• порождается электрическим зарядом;

• обнаруживается по действию на заряд;

• действует на заряды с некоторой силой.

Точечный заряд – модель заряженного тела, размерами которого можно пренебречь в условиях

данной конкретной задачи ввиду малости размеров тела по сравнению с расстоянием от него до

точки определения поля.

Пробный заряд – точечный заряд, который вносится в данное электростатическое поле для измерения его характеристик. Этот заряд должен быть достаточно мал, чтобы своим воздействием не нарушить положение зарядов – источников измеряемого поля и тем

самым не изменить создаваемое ими поле.

Электрический диполь – система двух разноименных по знаку и одинаковых по величине точечных зарядов, находящихся на небольшом расстоянии один от другого. Вектор l, проведенный от отрицательного заряда к положительному, называется плечом диполя. Вектор

p = q*l называется электрическим моментом диполя.

Характеристики электрического поля:

1. силовая характеристика – напряженность (Е) – это векторная физическая величина, численно равная отношению силы, действующей на заряд, помещенный в данную точку поля, к величине этого заряда: Е = F/q; [E] = [ 1 Н/Кл ] = [1 В/м ]

Графически электрическое поле изображают с помощью силовых линий –это линии, касательные к которым в каждой точке пространства совпадают с направлением вектора напряженности.

Силовые линии электрического поля незамкнуты, они начинаются на положительных зарядах и заканчиваются на отрицательных:

2. энергетическая характеристика – потенциал j — это скалярная физическая величина, равная отношению потенциальной энергии заряда, необходимой для его перемещения из одной точки поля в другую, к величине этого заряда: j = DЕр/q. [j] = [1 Дж/Кл ] =[1 В ].

U = j1 — j2 — разность потенциалов (напряжение)

Физический смысл напряжения: U = j1 — j2 = А/q — — напряжение численно равно отношению работы по перемещению заряда из начальной точки поля в конечную к величине этого заряда.

U = 220 В в сети означает, что при перемещении заряда в 1 Кл из одной точки поля в другую, поле совершает работу в 220 Дж.

3. Индукция электрического поля. Напряженность электрического поля является силовой характеристикой поля и определяется не только зарядами, создающими поле, но зависит и от свойств среды, в которой находятся эти заряды.

Часто бывает удобно исследовать электрическое поле, рассматривая только заряды и их расположение в пространстве, не принимая во внимание свойств окружающей среды. Для этой цели используется векторная величина, которая называется электрической индукцией или электрическим смещением. Вектор электрической индукции D в однородной изотропной среде связан с вектором напряженности Е соотношением

img 2uoeJc.

Графическое изображение электрических полей.

Электрические поля можно изображать графически: при помощи силовых линий или эквипотенциальных поверхностей (которые взаимно перпендикулярны между собой в каждой точке поля.

Силовыми линиями (линиями напряженности) называются линии, касательные в каждой точке к которым совпадают с направлением вектора напряженности в данной точке.

Эквипотенциальные поверхности – это поверхности равного потенциала.

Закон взаимодействия неподвижных точечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутильных весов, подобных тем, которые (см. § 22) использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет). Точечным называется заряд, сосредоточенный на теле, линейные раз­меры которого пренебрежимо малы по сравнению с расстоянием до других заряжен­ных тел, с которыми он взаимодействует. Понятие точечного заряда, как и материаль­ной точки, является физической абстракцией.

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:

img tcQaU0

где k коэффициент пропорциональности, зависящий от выбора системы единиц.

Сила F направлена по прямой, соединяющей взаимодействующие заряды, т. е. является центральной, и соответствует притяжению (F 0) в случае одноименных зарядов. Эта сила называется кулоновской силой. В векторной форме закон Кулона имеет вид

img(78.1)

В СИ коэффициент пропорциональности равен

img d6oFTb

Тогда закон Кулона запишется в окончательном виде:

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.

Электрический заряд q — физическая величина, определяющая интенсивность электромагнитного взаимодействия.

Атомы состоят из ядер и электронов. В состав ядра входят положительно заряженные протоны и не имеющие заряда нейтроны. Электроны несут отрицательный заряд. Количество электронов в атоме равно числу протонов в ядре, поэтому в целом атом нейтрален.

Точечный электрический заряд — заряженное тело, размеры которого во много раз меньше расстояния до другого наэлектризованного тела, взаимодействующего с ним.

Два неподвижных точечных электрических заряда в вакууме взаимодействуют с силами, направленными по прямой, соединяющей эти заряды; модули этих сил прямо пропорциональны произведению зарядов и обратно пропорциональны квадрату расстояния между ними:

image001

image002

где image003— электрическая постоянная.

где image00412 — сила, действующая со стороны второго заряда на первый, а image00421 — со стороны первого на второй.

image008

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ. НАПРЯЖЕННОСТЬ

Факт взаимодействия электрических зарядов на расстоянии можно объяснить наличием вокруг них электрического поля — материального объекта, непрерывного в пространстве и способного действовать на другие заряды.

Поле неподвижных электрических зарядов называют электростатическим.

Характеристикой поля является его напряженность.

image009

Напряженность электрического поля в данной точке — это вектор, модуль которого равен отношению силы, действующей на точечный положительный заряд, к величине этого заряда, а направление совпадает с направлением силы.

Напряженность поля точечного заряда Q на расстоянии r от него равна

image010

Принцип суперпозиции полей

Напряженность поля системы зарядов равна векторной сумме напряженностей полей каждого из зарядов системы:

image012image011

Диэлектрическая проницаемость среды равна отношению напряженностей поля в вакууме и в веществе:

image013

image014

Напряженность поля на расстоянии r от заряда Q равна

image015

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ЗАРЯЖЕННОГО ТЕЛА В ОДНОРОДНОМ ЭЛЕКТРО-СТАТИЧЕСКОМ ПОЛЕ

image018

Эта работа не зависит от формы траектории, то есть при перемещении заряда q вдоль произвольной линии L работа будет такой же.

Работа электростатического поля по перемещению заряда не зависит от формы траектории, а определяется исключительно начальным и конечным состояниями системы. Она, как и в случае с полем сил тяжести, равна изменению потенциальной энергии, взятому с противоположным знаком:

image019

Из сравнения с предыдущей формулой видно, что потенциальная энергия заряда в однородном электростатическом поле равна:

image020

Потенциальная энергия зависит от выбора нулевого уровня и поэтому сама по себе не имеет глубокого смысла.

ПОТЕНЦИАЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ И НАПРЯЖЕНИЕ

Потенциальным называется поле, работа которого при переходе из одной точки поля в другую не зависит от формы траектории. Потенциальными являются поле силы тяжести и электростатическое поле.

Работа, совершаемая потенциальным полем, равна изменению потенциальной энергии системы, взятой с противоположным знаком:

image021

Потенциал — отношение потенциальной энергии заряда в поле к величине этого заряда:

image022

Потенциал однородного поля равен

image023

где d — расстояние, отсчитываемое от некоторого нулевого уровня.

Потенциальная энергия взаимодействия заряда q с полем равна image024.

Поэтому работа поля по перемещению заряда из точки с потенциалом φ1 в точку с потенциалом φ2 составляет:

image025

Величина 025называется разностью потенциалов или напряжением.

Напряжение или разность потенциалов между двумя точками — это отношение работы электрического поля по перемещению заряда из начальной точки в конечную к величине этого заряда:

НАПРЯЖЕННОСТЬ ПОЛЯ И РАЗНОСТЬ ПОТЕНЦИАЛОВ

При перемещении заряда q вдоль силовой линии электрического поля напряженностью image017на расстояние Δ d поле совершает работу

image026

Так как по определению, image027то получаем:

image028

Отсюда image029и напряженность электрического поля равна

image030

Итак, напряженность электрического поля равна изменению потенциала при перемещении вдоль силовой линии на единицу длины.

image031

Если положительный заряд перемещается в направлении силовой линии, то направление действия силы совпадает с направлением перемещения, и работа поля положительна:

image032

Тогда 032, то есть напряженность направлена в сторону убывания потенциала.

Напряженность измеряют в вольтах на метр:

Напряженность поля равна 1 В/м, если напряжение между двумя точками силовой линии, расположенными на расстоянии 1 м, равна 1 В.

image033

Величина С характеризует способность проводника накапливать электрический заряд и называется электрической емкостью. Электроемкость проводника зависит от его размеров, формы, а также электрических свойств среды.

Электроёмкостъ двух проводников — отношение заряда одного из них к разности потенциалов между ними:

image034

Конденсатор — два проводника, разделенные диэлектриком, служащие для накопления электрического заряда. Под зарядом конденсатора понимают модуль заряда одной из его пластин или обкладок.

Способность конденсатора накапливать заряд характеризуется электроемкостью, которая равна отношению заряда конденсатора к напряжению:

Емкость конденсатора равна 1 Ф, если при напряжении 1 В его заряд равен 1 Кл.

image035

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА.

Точные эксперименты показывают, что W=CU 2 /2

image036

Плотность энергии электрического поля

image037

где V = Sd — объем, занимаемый полем внутри конденсатора. Учитывая, что емкость плоского конденсатора

image038

а напряжение на его обкладках U=Ed

image039

Пример. Электрон, двигаясь в электрическом поле из точки 1 через точку 2, увеличил свою скорость от 1000 до 3000 км/с. Определите разность потенциалов между точками 1 и 2.

image024

image040

Так как электрон увеличил свою скорость, то ускорение и сила Кулона сонаправлены со скоростью. Значит, электрон движется против силовых линий поля. Изменение кинетической энергии электрона равно работе поля :

image041

Ответ: разность потенциалов равна — 22,7 В.

lazy placeholder

Электрическое поле характеризуется воздействием на электро заряженную частицу с силой пропорциональной заряда частицы и независящей от ее скорости.

Напряжённость

Напряжённость — векторная величина определяющая силу

lazy placeholder

действующую на заряженную частицу или тело со стороны электрического поля и численно равная отношению силы к заряду частицы.

Е = F/Q [Н/Кл] или [B/M]

Напряжённость — это основная характеристика электрического поля которая измеряет интенсивность поля.

Направление вектора напряжённости совпадает с направлением силы действующей на частицу с положительным зарядом.

lazy placeholderlazy placeholder

Электрическое поле называется однородным (равномерным) если напряжённость поля во всех точках одинаковое по величине и направлению.

Электрическое напряжение

Электрическое напряжение (U) — это работа (А) совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

U = A/q [Дж/Кл] или [В]

Потенциал

Потенциал (φ) — это энергетическая характеристика поля численно равная отношению потенциальной энергии заряженной частицы помещенной в данной точке поля величине её заряда.

φ = W/Q [В]

Геометрическое место поля с с одинаковым потенциалом называется эквипотенциальной поверхностью.

Источник

Комфорт ремонт
Adblock
detector