электрическое поле равномерно заряженного шара

§ 1.12. Поле заряженной плоскости, сферы и шара

Поле равномерно заряженной бесконечной плоскости

Когда заряд распределен по какой-либо поверхности, то для расчета полей удобно ввести поверхностную плотность заряда с. Выделим на плоской поверхности маленький участок площадью ΔS. Пусть заряд этого участка равен Δq. Поверхностной плотностью заряда называют отношение заряда Δq к площади поверхности, по которой он распределен:

65 1

Эта плотность может непрерывно изменяться вдоль поверхности. Конечно, электрический заряд имеет дискретную (прерывную) структуру, так как сосредоточен в элементарных частицах. Но если на поверхности площадью ΔS содержится огромное число элементарных зарядов, то дискретную структуру заряда можно не принимать во внимание. Мы ведь пользуемся понятием плотности, считая, что масса непрерывно распределена в пространстве. А на самом деле все тела состоят из дискретных образований — атомов.

В случае равномерного распределения заряда q по поверхности площадью S поверхностная плотность заряда постоянна и равна:

65 2

Рассмотрим бесконечную равномерно заряженную плоскость. Поверхностная плотность заряда σ известна. Из соображений симметрии очевидно, что линии напряженности представляют собой прямые, перпендикулярные плоскости. Поле бесконечной плоскости — однородное поле. Во всех точках пространства, независимо от расстояния до плоскости, напряженность поля одна и та же.

Для применения теоремы Гаусса нужно выбрать замкнутую поверхность таким образом, чтобы можно было легко вычислить поток напряженности электрического поля через эту поверхность. В данном случае удобнее всего выбрать цилиндр, образующие которого параллельны линиям напряженности электрического поля, а основания параллельны плоскости (рис. 1.43).

1.43

Тогда поток через боковую поверхность цилиндра будет равен нулю. Поэтому полный поток равен потоку через основания цилиндра А и В:

66 1

где Еn — проекция вектора напряженности на нормаль к основанию цилиндра. Полный заряд внутри цилиндра равен σS. Согласно теореме Гаусса

66 2

Отсюда модуль напряженности равен:

66 3

В СИ эта формула принимает вид:

66 4

а в абсолютной системе

66 5

Поле равномерно заряженной сферы

Поток напряженности электрического поля через любую замкнутую поверхность внутри сферы равен нулю, так как равен нулю заряд. Это может быть лишь в том случае, когда напряженность поля внутри сферы равна нулю.

Найдем напряженность поля вне сферы. Из соображений симметрии ясно, что линии напряженности начинаются на поверхности сферы (в случае положительного заряда), направлены по радиусам сферы и перпендикулярны ее поверхности (рис. 1.44). Поэтому модуль напряженности поля одинаков во всех точках, лежащих на одинаковых расстояниях от центра сферы.

1.44

Проведем сферическую поверхность радиусом r > R, где R — радиус заряженной сферы. Поток напряженности через эту поверхность равен:

67 1

Если заряд сферы q, то по теореме Гаусса

67 2

Следовательно, модуль напряженности поля при r > R равен:

67 3

Таким образом, поле заряженной сферы совпадает вне сферы с полем точечного заряда, расположенного в центре сферы. График зависимости Е(r) изображен на рисунке 1.45.

1.45

Поле равномерно заряженного шара

Для характеристики распределения заряда по объему используется понятие объемной плотности заряда. Объемной плотностью заряда называется отношение заряда Δq к объему ΔV, в котором он распределен:

67 4

Эта плотность может непрерывно изменяться внутри заряженного тела. Если заряд q равномерно распределен по объему V, то объемная плотность заряда постоянна и равна:

68 1

Будем считать, что шар радиусом R равномерно заряжен; плотность заряда ρ известна. Полный заряд шара

68 2

Напряженность электрического поля вне шара можно найти с помощью теоремы Гаусса точно так же, как и напряженность равномерно заряженной сферы [см. формулу (1.12.9)]:

68 3

(при условии, что r > R). Поле аналогично полю точечного заряда q, расположенного в центре шара.

Для нахождения поля внутри шара нужно применить теорему Гаусса к потоку напряженности через сферическую поверхность радиусом к

Напряженность электрического поля линейно растет с увеличением расстояния вплоть до u = R. При r > R она определяется формулой (1.12.12). График модуля напряженности поля в зависимости от расстояния до центра представлен на рисунке 1.47.

1.47

Теорема Гаусса позволяет сравнительно просто определить напряженность электрического поля, если распределение заряда обладает определенной симметрией. Формулы (1.12.5), (1.12.9) и (1.12.15) следует запомнить. Их придется часто использовать.

Вопрос для самопроверки

* Мы предполагаем, что диэлектрическая проницаемость среды одинакова внутри и вне шара.

Источник

Электрическое поле заряженного шара:

Пусть электропроводящий шар радиусом 248041

Определим напряженность поля, создаваемого заряженным шаром (сферой) в его центре, на поверхности и за его пределами. Для этого мы сначала разделим заряд 248047на несколько зарядов, равномерно распределенных по поверхности шара, т.е. 248048.

Итоговая напряженность поля 248050и 248052любых одинаковых зарядов в центре шара на основе принципа суперпозиции равна нулю. Значит, внутри заряженной сферы напряженность поля будет равна нулю.

Найдем напряженность поля в произвольной точке 248054 z5vSEKz, расположенной на расстоянии 248055от поверхности шара. Выделим пару зарядов 248057и 248060, расположенных симметрично линии 248061. Эти заряды создают напряженность на оси, направленной по оси 248063. Значит, силовые линии напряженности поля в точке за пределами шара соответствуют силовым линиям положительно заряженного точечного заряда, направленным из центра шара (рис. 7.5 б)

248066

Напряженность электрического поля на поверхности заряженного шара определяется следующей формулой:

248068

Из-за того, что напряженность поля, созданного в точке за пределами заряженного шара, одинаковы с полем, созданным точечным зарядом, напряженность поля, созданного в точке за пределами шара, определяется по формуле:

248072

Это означает, что напряженность поля уменьшается обратно пропорционально квадрату расстояния (рис. 7.5 в).

Напряженность электрического поля зависит от свойств среды, в которой расположен заряд, создающий поле. Рассмотрим случай, когда между двумя противоположно заряженными пластинами помещен диэлектрик (рис. 7.6).

248085

В диэлектрике свободных электронов очень мало. Основные электроны расположены в электронной оболочке атома. Под воздействием поля электрических зарядов пластин электронная оболочка деформируется. В результате центры положительных и отрицательных зарядов атома не накладываются друг на друга. Это явление называется поляризацией диэлектрика.

Напряженность поля 248077, создаваемого поляризованными атомами (молекулами), направлена противоположно напряженности основного поля 248080. В результате общая напряженность поля снижается 248082. Величина, показывающая во сколько раз уменьшается напряженность поля, называется диэлектрической восприимчивостью диэлектрика:

248083

В таком случае напряженность поля в точке, расположенной на расстоянии 248087 tZatLFfот точечного заряда, расположенного в диэлектрике, тоже уменьшается в ε раз:

248089

Также сила взаимодействия точечных зарядов, расположенных в однородном диэлектрике, будет в 248093раз меньше, чем сила их взаимодействия в вакууме, и сила этого взаимодействия вычисляется с помощью следующего выражения:

248095

Диэлектрическая восприимчивость – это безразмерная величина.

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Электростатическое поле точечного заряда и заряженной сферы

теория по физике 🧲 электростатика

Любые заряженные тела создают вокруг себя электростатическое поле. Рассмотрим особенности электростатического поля, создаваемого точечным зарядом и заряженной сферой.

Электростатическое поле точечного заряда

Направление силовых линий электростатического поля точечного заряда

Положительный заряд +Q Отрицательный заряд –Q
image1 14 image2 8
У положительного заряда силовые линии направлены по радиальным линиям от заряда. У отрицательного заряда силовые линии направлены по радиальным линиям к заряду.

Модуль напряженности не зависит от значения пробного заряда q0:

Модуль напряженности точечного заряда в вакууме:

Модуль напряженности точечного заряда в среде:

Сила Кулона:

Потенциал не зависит от значения пробного заряда q0:

Потенциал точечного заряда в вакууме:

Потенциал точечного заряда в среде:

Внимание! Знак потенциала зависит только от знака заряда, создающего поле.

Эквипотенциальные поверхности для данного случая — концентрические сферы, центр которых совпадает с положением заряда.

Работа электрического поля по перемещению точечного заряда:

A 12 = ± q ( φ 1 − φ 2 )

Пример №1. Во сколько раз увеличится модуль напряженности электрического поля, созданного точечным зарядом Q в некоторой точке, при увеличении значения этого заряда в 5 раз? Модуль напряженности электрического поля, созданного точечным зарядом, определяется формулой:

Формула показывает, что модуль напряженности и электрический заряд — прямо пропорциональные величины. Следовательно, если заряд, который создает поле, увеличится в 5 раз, то модуль напряженности создаваемого поля тоже увеличится в 5 раз.

Электростатическое поле заряженной сферы

Направление силовых линий электростатического поля заряженной сферы:

Положительно заряженная сфера +Q Отрицательно заряженная сфера –Q
image3 6 image4 4
У положительно заряженной сферы силовые линии — это радиальные линии, которые начинаются из этой сферы. У отрицательно заряженной сферы силовые линии — это радиальные линии, которые заканчиваются в этой сфере.

Модуль напряженности электростатического поля заряженной сферы:

Внутри проводника (расстояние меньше радиуса сферы, или r E = 0

a — расстояние от поверхности сферы до изучаемой точки. r — расстояние от центра сферы до изучаемой точки.

Сила Кулона:

Пример №2. Определить потенциал электростатического поля, создаваемого заряженной сферой радиусом 0,1 м, в точке, находящейся на расстоянии 0,2 м от этой сферы. Сфера заряжена положительна и имеет заряд, равный 6 нКл.

Так как сфера заряжена положительно, то потенциал тоже положителен: image5 4

Два неподвижных точечных заряда действуют друг на друга с силами, модуль которых равен F. Чему станет равен модуль этих сил, если один заряд увеличить в n раз, другой заряд уменьшить в n раз, а расстояние между ними оставить прежним?

Алгоритм решения

Решение

Запишем исходные данные:

Применим закон Кулона к парам зарядов. Закон Кулона для первой пары:

Закон Кулона для второй пары:

Коэффициент n сократился. Следовательно, силы, с которыми заряды взаимодействуют друг с другом, не изменятся:

После изменения зарядов модуль силы взаимодействия между ними останется равным F.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Screenshot 2 3В трёх вершинах квадрата размещены точечные заряды: +q, – «>– q, +q (q >0) (см. рисунок). Куда направлена кулоновская сила, действующая со стороны этих зарядов на точечный заряд +2q, находящийся в центре квадрата?

Алгоритм решения

Решение

Сделаем чертеж. В центр помещен положительный заряд. Он будет отталкиваться от положительных зарядов и притягиваться к отрицательным:

image1 21

Модули всех векторов сил, приложенных к центральному точечному заряду равны, так как модули точечных зарядов, расположенных в вершинах квадрата равны, и находятся они на одинаковом расстоянии от этого заряда.

Складывая векторы геометрически, мы увидим, что силы, с которыми заряд +2q отталкивается от точечных зарядов +q, компенсируют друг друга. Поэтому на заряд действует равнодействующая сила, равная силе, с которой он притягивается к отрицательному точечному заряду –q. Эта сила направлена в ту же сторону (к нижней правой вершине квадрата).

pазбирался: Алиса Никитина | обсудить разбор | оценить

Screenshot 3 3На неподвижном проводящем уединённом шарике радиусом R находится заряд Q. Точка O – центр шарика, OA = 3R/4, OB = 3R, OC = 3R/2. Модуль напряжённости электростатического поля заряда Q в точке C равен EC. Определите модуль напряжённости электростатического поля заряда Q в точке A и точке B?

Установите соответствие между физическими величинами и их значениями.

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

Источник

Электрическое поле равномерно заряженного шара

Что показывают силовые линии?
Для чего они используются?

Напряжённость поля точечного заряда.

Найдём напряжённость электрического поля, создаваемого точечным зарядом q0. По закону Кулона этот заряд будет действовать на положительный заряд q с силой

90.1

Модуль напряжённости поля точечного заряда q0 на расстоянии г от него равен:

90.2

Вектор напряжённости в любой точке электрического поля направлен вдоль прямой, соединяющей эту точку и заряд (рис. 14.14), и совпадает с силой, действующей на точечный положительный заряд, помещённый в данную точку.

90.3

Силовые линии электрического поля точечного заряда, как следует из соображений симметрии, направлены вдоль радиальных линий (рис. 14.15, а).

Поле заряженного шара.

Рассмотрим теперь вопрос об электрическом поле заряженного проводящего шара радиусом R. Заряд q равномерно распределён по поверхности шара. Силовые линии электрического поля, также из соображений симметрии, направлены вдоль продолжений радиусов шара (рис. 14.15, б).

Распределение в пространстве силовых линий электрического поля шара с зарядом q на расстояниях r ≥ R от центра шара аналогично распределению силовых линий поля точечного заряда q (см. рис. 14.15, а). Следовательно, на расстоянии r ≥ R от центра шара напряжённость поля определяется той же формулой (14.9), что и напряжённость поля точечного заряда, помещённого в центре сферы:

90.4

Внутри проводящего шара (r 90.5

На рисунке 14.16 показано, как определяется напряжённость поля 89.1в точке А, созданного двумя точечными зарядами q1 и q2.

Источник

Электрическое поле равномерно заряженного шара

tr c w

Вычисление электрических полей с помощью теоремы Остроградского –Гаусса back go

Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.

Поле бесконечной однородно заряженной плоскости

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

071

где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность 005во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность 005будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).

072
Рис. 2.11 Рис. 2.12

Тогда 073

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

076

Внутри поверхности заключен заряд 077. Следовательно, из теоремы Остроградского–Гаусса получим:

откуда видно, что напряженность поля плоскости S равна:

Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости 080

Поле двух равномерно заряженных плоскостей

Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей 081.

Тогда внутри плоскостей

Вне плоскостей напряженность поля 083

085 084

Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):

Механические силы, действующие между заряженными телами, называют пондермоторными.

Тогда сила притяжения между пластинами конденсатора:

где S – площадь обкладок конденсатора. Т.к. 089, то

Это формула для расчета пондермоторной силы.

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью 091, где d q – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

092

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров 093для боковой поверхности 094т.е. зависит от расстояния r.

Следовательно, поток вектора 005через рассматриваемую поверхность, равен 095

При 096на поверхности будет заряд 097По теореме Остроградского-Гаусса 098, отсюда

Если 100 101, т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

102

Если уменьшать радиус цилиндра R (при 103), то можно вблизи поверхности получить поле с очень большой напряженностью и, при 104, получить нить.

Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком

106

В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:

107

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).

Поле заряженного пустотелого шара

Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, 005– в любой точке проходит через центр шара. 108,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).

Если 096то внутрь воображаемой сферы попадет весь заряд q, распределенный по сфере, тогда

откуда поле вне сферы:

Внутри сферы, при 100поле будет равно нулю, т.к. там нет зарядов: 111

113 112

Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы.

Поле объемного заряженного шара

Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула:

Но внутри шара при 100сферическая поверхность будет содержать в себе заряд, равный

115

где ρ – объемная плотность заряда, равная: 116; 117– объем шара. Тогда по теореме Остроградского-Гаусса запишем:

Таким образом, внутри шара 120

Источник

Первый строительный портал
Adblock
detector