электрическое поле равномерно заряженной плоскости

Электрическое поле равномерно заряженной плоскости

Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда.

Теорема Гаусса утверждает:

Поток вектора напряженности электростатического поля 63230164552072 8через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε0.

63230164552082 9

Окружим теперь точечный заряд произвольной замкнутой поверхностью и рассмотрим вспомогательную сферу радиуса (рис. 1.3.3).

Таким образом, теорема Гаусса доказана.

Теорема Гаусса является следствием закона Кулона и принципа суперпозиции. Но если принять утверждение, содержащееся в этой теореме, за первоначальную аксиому, то ее следствием окажется закон Кулона. Поэтому теорему Гаусса иногда называют альтернативной формулировкой закона Кулона.

Используя теорему Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля вокруг заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией и общую структуру поля можно заранее угадать.

Этот результат не зависит от радиуса заряженного цилиндра, поэтому он применим и к полю длинной однородно заряженной нити.

Аналогичным образом можно применить теорему Гаусса для определения электрического поля в ряде других случаев, когда распределение зарядов обладает какой-либо симметрией, например, симметрией относительно центра, плоскости или оси. В каждом из таких случаев нужно выбирать замкнутую гауссову поверхность целесообразной формы. Например, в случае центральной симметрии гауссову поверхность удобно выбирать в виде сферы с центром в точке симметрии. При осевой симметрии замкнутую поверхность нужно выбирать в виде соосного цилиндра, замкнутого с обоих торцов (как в рассмотренном выше примере). Если распределение зарядов не обладает какой-либо симметрией и общую структуру электрического поля угадать невозможно, применение теоремы Гаусса не может упростить задачу определения напряженности поля.

Рассмотрим еще один пример симметричного распределения зарядов – определение поля равномерно заряженной плоскости (рис. 1.3.5).

Полученное выражение для электрического поля однородно заряженной плоскости применимо и в случае плоских заряженных площадок конечного размера. В этом случае расстояние от точки, в которой определяется напряженность поля, до заряженной площадки должно быть значительно меньше размеров площадки.

Источник

Электрическое поле равномерно заряженной плоскости

tr c w

Вычисление электрических полей с помощью теоремы Остроградского –Гаусса back go

Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.

Поле бесконечной однородно заряженной плоскости

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

071

где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность 005во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность 005будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).

072
Рис. 2.11 Рис. 2.12

Тогда 073

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

076

Внутри поверхности заключен заряд 077. Следовательно, из теоремы Остроградского–Гаусса получим:

откуда видно, что напряженность поля плоскости S равна:

Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости 080

Поле двух равномерно заряженных плоскостей

Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей 081.

Тогда внутри плоскостей

Вне плоскостей напряженность поля 083

085 084

Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):

Механические силы, действующие между заряженными телами, называют пондермоторными.

Тогда сила притяжения между пластинами конденсатора:

где S – площадь обкладок конденсатора. Т.к. 089, то

Это формула для расчета пондермоторной силы.

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью 091, где d q – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

092

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров 093для боковой поверхности 094т.е. зависит от расстояния r.

Следовательно, поток вектора 005через рассматриваемую поверхность, равен 095

При 096на поверхности будет заряд 097По теореме Остроградского-Гаусса 098, отсюда

Если 100 101, т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

102

Если уменьшать радиус цилиндра R (при 103), то можно вблизи поверхности получить поле с очень большой напряженностью и, при 104, получить нить.

Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком

106

В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:

107

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).

Поле заряженного пустотелого шара

Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, 005– в любой точке проходит через центр шара. 108,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).

Если 096то внутрь воображаемой сферы попадет весь заряд q, распределенный по сфере, тогда

откуда поле вне сферы:

Внутри сферы, при 100поле будет равно нулю, т.к. там нет зарядов: 111

113 112

Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы.

Поле объемного заряженного шара

Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула:

Но внутри шара при 100сферическая поверхность будет содержать в себе заряд, равный

115

где ρ – объемная плотность заряда, равная: 116; 117– объем шара. Тогда по теореме Остроградского-Гаусса запишем:

Таким образом, внутри шара 120

Источник

Электрическое поле. Напряженность. Принцип суперпозиции

Электрическое поле. Напряженность электрического поля. Линии напряженности электрического поля (силовые линии). Однородное электрическое поле. Напряженность электростатического поля точечного заряда. Принцип суперпозиции полей. Теорема Гаусса. Электростатическое поле равномерно заряженных плоскости, сферы и шара.

Электрическое поле представляет собой векторное поле, существующее вокруг тел или частиц, обладающее электрическим зарядом, а также возникающее при изменении магнитного поля.

Единицы измерения: \(\displaystyle [\text<В>/\text<м>]\) (вольт на метр).

всегда начинаются на положительных зарядах и заканчиваются на отрицательных.

f t 3 2

— такое поле в данной области пространства. если вектор напряженности поля одинаков в каждой точке области.

При равномерном распределении электрического заряда \(q\) по поверхности площади \(S\) поверхностная плотность заряда \(\displaystyle \sigma\) постоянна и равна

Принцип суперпозиции полей

f t 3 3

Заряженная плоскость

Её электрическое поле однородно, то есть его напряжённость одинакова на любом расстоянии от плоскости, линии напряжённости параллельны. По теореме Гаусса:

Заряженная сфера

Рассмотрим электрическое поле равномерно заряженной сферы. Поток напряжённости через любую замкнутую поверхность внутри сферы равен нуля, так как внутри этой поверхности нет заряда. Отсюда следует, что внутри сферы напряжённость равна нулю.

Заряженный шар

Источник

Учебники

Журнал «Квант»

Общие

§9. Электрическое поле и его свойства

9.6. Поле равномерно заряженной плоскости

Решим задачу, которая нам неоднократно понадобится в дальнейшем. Пусть электрическое поле создается зарядами, которые равномерно распределены по бесконечной плоскости.

Конечно, в реальности бесконечно больших поверхностей не существует. В данном случае, мы подразумеваем, что точка A, в которой рассчитывается напряженность поля, находится на расстоянии h от плоскости, которое значительно меньше расстояний до краев заряженного участка (рис. 165). В этом случае влияние зарядов, расположенных достаточно далеко от рассматриваемой точки становится пренебрежимо малым. Проводить расчеты для бесконечно больших плоскостей оказывается проще, чем для конечных участков.

Img Slob 10 9 165

В качестве характеристики распределения зарядов введем величину σ — поверхностную плотность заряда. Выберем на плоскости произвольную точку с координатами (x, y), окружим ее малой площадкой площадью ΔS. Пусть заряд этой выделенной площадки равен ΔQ, тогда средняя поверхностная плотность заряда определяется как отношение заряда площадки к ее площади \(

Для равномерно заряженной поверхности поверхностная плотность заряда постоянна σ(x, y) = σ = const.

Для расчета напряженности поля воспользуемся законом Ш. Кулона и принципом суперпозиции.

Разобьем заряженную плоскость на малые участки. Такое разбиение можно проводить различными способами. Расчеты упрощаются, если мыс-ленно разбить плоскость на тонкие кольца, а затем каждое кольцо разделить на малые участки (рис. 166).

Img Slob 10 9 166

Каждый малый участок плоскости можно рассматривать как точечный заряд величиной ΔQ = σ·ΔS, который создает поле, вектор напряженности которого \(

\Delta \vec E\) направлен вдоль прямой, соединяющий заряд с точкой наблюдения A (рис. 167).

Img Slob 10 9 167

Полная напряженность электрического поля будет равна векторной сумме напряженностей полей, создаваемых отдельными участками плоско-сти. Ясно, что результирующий вектор напряженности будет направлен перпендикулярно плоскости (обозначим это направление осью z). Действительно, для каждого заряда ΔQ найдется симметрично расположенный заряд ΔQ´, сумма векторов напряженностей полей \(

Вычислим напряженность поля, создаваемого равномерно заряженным кольцом, в точке находящейся на оси кольца на расстоянии h от его центра.

Разобьем кольцо на малые участки, заряд каждого из них обозначим ΔQi. В точке наблюдения вектор напряженность поля \(

r = \sqrt\) — расстояние от заряда то точки наблюдения.

Как мы показали, результирующий вектор напряженности направлен вдоль оси кольца. Поэтому для его расчета достаточно просуммировать проекции векторов \(

\Delta \vec E\) на эту ось \(

Так как все заряды находятся на равных расстояниях r от точки наблюдения, а векторы \(

\Delta \vec E_i\) образуют равные углы α с осью Z, вычисление этой суммы сводится суммированию зарядов (постоянные множители можно вынести за знак суммы):

Заметим, что в центре кольца напряженность поля равна нулю, затем с ростом h напряженность поля возрастает до некоторого максимального значения, после чего начинает монотонно убывать. Причем на больших расстояниях при h >> R в формуле (2) можно пренебречь R в знаменателе, при этом напряженность поля определяется формулой \(

Img Slob 10 9 168

Далее для вычисления напряженности поля, созданного всей плоско-стью, необходимо просуммировать выражения (2) по всем кольцам, на которые была разбита плоскость. Такое суммирование, в принципе, можно провести, но этот расчет требует привлечения операции интегрирования, поэтому заниматься этим не будем. Тем более, что результат можно получит гораздо быстрее, использую теорему Гаусса.

Для использования этой теоремы для определения напряженности поля, необходимо рассмотреть симметрию поля, которая, очевидно связана с симметрией зарядов. Распределение зарядов не изменится, если плоскость сместить на любой вектор \(

Img Slob 10 9 169

Следовательно, напряженность поля может зависеть только от расстояния до плоскости h. Любая прямая, перпендикулярная плоскости является осью симметрии, то есть при повороте плоскости на любой угол относительно любой оси, перпендикулярной плоскости, распределение зарядов не изменяется — следовательно, и вектор напряженности при таком повороте не изменится, поэтому этот вектор должен быть перпендикулярен плоскости. Наконец, заряженная плоскость является плоскостью симметрии для поля. Поэтому в симметричных точках векторы напряженности также симметричны. Выявленные свойства симметрии электрического поля позволяют выбрать поверхность, для которой можно выразить поток вектора напряженности в простой форме. Итак, в качестве такой поверхности выберем поверхность прямого цилиндра, образующие которого перпендикулярны плоскости, а основания площадью S параллельны ей и находятся на равных расстояниях от плоскости.

Прежде всего, заметим, что поток вектора напряженности через боковую поверхность цилиндра равен нулю, так как во всех точках боковой поверхности векторы напряженности \(

\vec n\) взаимно перпендикулярны (поэтому cos α = 0) (рис. 170).

Img Slob 10 9 170

Как видите, с использованием теоремы Гаусса нам удалось решить по-ставленную задачу «в одно действие». Главная составляющая успеха — анализ симметрии поля, позволивший разумно выбрать поверхность, для использования теоремы Гаусса. Также обратите внимание, что напряженность данного поля одинакова во всех точках, следовательно, это поля является однородным. Подчеркнем, независимость напряженности поля от расстояния до плоскости h никак не следует из симметрии поля, это результат нашего расчета.

Источник

Первый строительный портал
Adblock
detector