электрическое поле точечного заряда нити

Электростатическое поле точечного заряда и заряженной сферы

теория по физике 🧲 электростатика

Любые заряженные тела создают вокруг себя электростатическое поле. Рассмотрим особенности электростатического поля, создаваемого точечным зарядом и заряженной сферой.

Электростатическое поле точечного заряда

Направление силовых линий электростатического поля точечного заряда

Положительный заряд +Q Отрицательный заряд –Q
image1 14 image2 8
У положительного заряда силовые линии направлены по радиальным линиям от заряда. У отрицательного заряда силовые линии направлены по радиальным линиям к заряду.

Модуль напряженности не зависит от значения пробного заряда q0:

Модуль напряженности точечного заряда в вакууме:

Модуль напряженности точечного заряда в среде:

Сила Кулона:

Потенциал не зависит от значения пробного заряда q0:

Потенциал точечного заряда в вакууме:

Потенциал точечного заряда в среде:

Внимание! Знак потенциала зависит только от знака заряда, создающего поле.

Эквипотенциальные поверхности для данного случая — концентрические сферы, центр которых совпадает с положением заряда.

Работа электрического поля по перемещению точечного заряда:

A 12 = ± q ( φ 1 − φ 2 )

Пример №1. Во сколько раз увеличится модуль напряженности электрического поля, созданного точечным зарядом Q в некоторой точке, при увеличении значения этого заряда в 5 раз? Модуль напряженности электрического поля, созданного точечным зарядом, определяется формулой:

Формула показывает, что модуль напряженности и электрический заряд — прямо пропорциональные величины. Следовательно, если заряд, который создает поле, увеличится в 5 раз, то модуль напряженности создаваемого поля тоже увеличится в 5 раз.

Электростатическое поле заряженной сферы

Направление силовых линий электростатического поля заряженной сферы:

Положительно заряженная сфера +Q Отрицательно заряженная сфера –Q
image3 6 image4 4
У положительно заряженной сферы силовые линии — это радиальные линии, которые начинаются из этой сферы. У отрицательно заряженной сферы силовые линии — это радиальные линии, которые заканчиваются в этой сфере.

Модуль напряженности электростатического поля заряженной сферы:

Внутри проводника (расстояние меньше радиуса сферы, или r E = 0

a — расстояние от поверхности сферы до изучаемой точки. r — расстояние от центра сферы до изучаемой точки.

Сила Кулона:

Пример №2. Определить потенциал электростатического поля, создаваемого заряженной сферой радиусом 0,1 м, в точке, находящейся на расстоянии 0,2 м от этой сферы. Сфера заряжена положительна и имеет заряд, равный 6 нКл.

Так как сфера заряжена положительно, то потенциал тоже положителен: image5 4

Два неподвижных точечных заряда действуют друг на друга с силами, модуль которых равен F. Чему станет равен модуль этих сил, если один заряд увеличить в n раз, другой заряд уменьшить в n раз, а расстояние между ними оставить прежним?

Алгоритм решения

Решение

Запишем исходные данные:

Применим закон Кулона к парам зарядов. Закон Кулона для первой пары:

Закон Кулона для второй пары:

Коэффициент n сократился. Следовательно, силы, с которыми заряды взаимодействуют друг с другом, не изменятся:

После изменения зарядов модуль силы взаимодействия между ними останется равным F.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Screenshot 2 3В трёх вершинах квадрата размещены точечные заряды: +q, – «>– q, +q (q >0) (см. рисунок). Куда направлена кулоновская сила, действующая со стороны этих зарядов на точечный заряд +2q, находящийся в центре квадрата?

Алгоритм решения

Решение

Сделаем чертеж. В центр помещен положительный заряд. Он будет отталкиваться от положительных зарядов и притягиваться к отрицательным:

image1 21

Модули всех векторов сил, приложенных к центральному точечному заряду равны, так как модули точечных зарядов, расположенных в вершинах квадрата равны, и находятся они на одинаковом расстоянии от этого заряда.

Складывая векторы геометрически, мы увидим, что силы, с которыми заряд +2q отталкивается от точечных зарядов +q, компенсируют друг друга. Поэтому на заряд действует равнодействующая сила, равная силе, с которой он притягивается к отрицательному точечному заряду –q. Эта сила направлена в ту же сторону (к нижней правой вершине квадрата).

pазбирался: Алиса Никитина | обсудить разбор | оценить

Screenshot 3 3На неподвижном проводящем уединённом шарике радиусом R находится заряд Q. Точка O – центр шарика, OA = 3R/4, OB = 3R, OC = 3R/2. Модуль напряжённости электростатического поля заряда Q в точке C равен EC. Определите модуль напряжённости электростатического поля заряда Q в точке A и точке B?

Установите соответствие между физическими величинами и их значениями.

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

Источник

Поле точечного заряда

pole tochechnogo zaryada pole tochechnogo zaryada

Всего получено оценок: 117.

Всего получено оценок: 117.

Конфигурация электрического поля определяется распределением зарядов. Поэтому самый простой вид электрического поля — это поле точечного заряда. Кратко рассмотрим строение такого поля.

Описание поля с помощью силовых линий

Проявление электрического поля состоит в возникновении силы, действующей на заряды, внесенные в это поле. Поскольку эта сила зависит от величины заряда, то характеристикой поля является специальный параметр — напряженность, которая равна отношению этой силы к величине пробного заряда:

fizika 145265 napryazhennost elektricheskogo polyaРис. 1. Напряженность электрического поля.

Для полного описания электрического поля необходимо знать модуль и направление вектора напряженности в любой точке.

Чтобы наглядно представить картину электрического поля, удобно нарисовать много векторов напряженности в рассматриваемой области. При этом векторы сольются в непрерывные линии. Такие линии называются силовыми линиями электрического поля, они всегда начинаются на положительном заряде, а заканчиваются на отрицательном. Информацию о модуле векторов в точке можно видеть из густоты этих линий.

Поле точечного заряда

Поскольку поле порождается электрическим зарядом, простейшим является поле точечного заряда. Строго говоря, в природе точечных зарядов нет: носителями заряда являются реальные элементарные частицы или тела, которые всегда занимают какой-то объем. Однако, если рассматриваемая область гораздо больше величины носителя заряда, то такой заряд с известной долей приближения можно считать точечным.

Сила, действующая на заряд, определяется формулой закона Кулона, известной в 10 классе:

Напряженность такого поля, следовательно, равна:

Она направлена по прямой, лежащей между зарядами. Следовательно, для того чтобы изобразить поле точечного заряда, необходимо помещать в различные точки пространства вокруг этого заряда пробный заряд и откладывать вектор кулоновской силы в этих точках.

Поскольку других зарядов в рассматриваемой ситуации нет — только точечный и пробный (он тоже точечный, с гораздо меньшей величиной) — то вектор силы, действующей на пробный заряд, будет всегда направлен по прямой, проходящей через исходный точечный заряд. Если таких векторов будет много, они сольются во множество радиальных линий.

При этом заметим, что по закону Кулона сила, действующая на пробный заряд, с увеличением расстояния падает. То есть густота силовых линий по мере удаления от точечного заряда должна уменьшаться. Для радиальных линий это так и есть.

Таким образом, электрическое поле точечного заряда представляет собой множество радиальных линий, расходящихся во все стороны от заряда. Если заряд положительный, то линии выходят из него, и уходят в бесконечность. Если заряд отрицательный — линии приходят из бесконечности в заряд.

Отметим, что описанный принцип построения силовых линий используется не только когда поле однородно, но и для полей, потенциал которых распределен в пространстве по сложному закону. В любом случае находятся векторы сил, действующих на пробный заряд, и по этим векторам строятся силовые линии. Поскольку на пробный заряд действуют сразу все рассматриваемые поля, для нахождения результирующей силы используется принцип суперпозиции полей (результирующая сила, действующая на пробный заряд, равна векторной сумме сил каждого отдельного поля, действующего на этот заряд).

Например, если рядом находятся два разноименных заряда, то картина электрического поля выглядит следующим образом:

pole elektricheskogo dipolya e1605314690951Рис. 3. Поле электрического диполя.

lazyimg

Что мы узнали?

Электрическое поле изображается в виде картины силовых линий. Их направление совпадает с направлением вектора напряженности, а густота характеризует его модуль. Электрическое поле точечного заряда представляет собой множество радиальных линий, выходящих из заряда и уходящих в бесконечность.

Источник

Напряженность поля заряженной нити

Модуль напряженности поля, создаваемого бесконечно длинной прямой однородно заряженной нитью (или цилиндром) на расстоянии r от ее оси

image791,

Если заряженная нить имеет конечную длину, то напряженность поля в точке, находящейся на перпендикуляре, восстановленном из середины нити, на расстоянии r от нее

image793,

Поверхностная плотность заряда

Заряд, распределенный на поверхности S, характеризуется поверхностной плотностью s

image795,

где Q – заряд, однородно распределенный на площадке S.

Напряженность заряженной плоскости

Напряженность поля, создаваемая бесконечной равномерно заряженной плоскостью,

image797.

Напряженность поля плоского конденсатора

Напряженность поля, создаваемая внутри заряженного плоского конденсатора для случая, если расстояние между пластинами много меньше линейных размеров пластин конденсатора

image799.

СПРАВОЧНЫЙ МАТЕРИАЛ

Постоянная image801м/Ф.

ВОПРОСЫ И УПРАЖНЕНИЯ

1. Какие фундаментальные свойства присущи электрическому заряду? Сформулируйте закон сохранения заряда.

2. В каких единицах измеряется электрический заряд? Чему равен элементарный заряд?

3. Какому закону подчиняется сила взаимодействия точечных зарядов? Какие утверждения содержит закон Кулона?

4. Получите численное значение и единицу электрической постоянной e0.

5. Как рассчитывается сила взаимодействия точечного заряда и зарядов, распределенных на телах конечных размеров?

6. Можно ли воспользоваться законом Кулона при расчете силы взаимодействия двух заряженных тел сферической формы?

7. Что является источником электрического поля? Как обнаруживается и исследуется электрическое поле?

8. Дайте определение напряженности электрического поля. В каких единицах измеряется напряженность?

9. Напишите формулу для напряженности E точечного заряда q. Изобразите график зависимости E(r), где r – расстояние от точечного заряда до точки поля, в которой определяется напряженность.

10. Каково содержание принципа суперпозиции электрических полей?

11. Как рассчитать напряженность поля заданного распределения точечных электрических зарядов?

12. Как вычисляется поток вектора напряженности электрического поля через любую поверхность?

13. Сформулируйте и запишите теорему Гаусса в интегральной форме.

14. Получите выражение для напряженности Е однородно заряженной бесконечной плоскости с поверхностной плотностью заряда s.

15. Получите выражение для напряженности E однородно заряженной сферы, цилиндра.

16. Напишите теорему Остроградского-Гаусса в дифференциальной форме.

ЗАДАЧИ ГРУППЫ А

1.(9.13) Два точечных заряда q1=7,5 нКл и q2=–14,7 нКл расположены на расстоянии r=5 см друг от друга. Найти напряженность E электрического поля в точке, находящейся на расстоянии a=3 см от положительного заряда и b=4 см от отрицательного заряда.

Ответ: E=112 кВ/м.

2.(9.15) Два металлических шарика одинакового радиуса и массы подвешены в одной точке на нитях одинаковой длины так, что их поверхности соприкасаются. Какой заряд Q нужно сообщить шарикам, чтобы сила натяжения нитей стала равной T=98 мН? Расстояние от центра шарика до точки подвеса равно l=10 см, масса каждого шарика m=5 г.

Ответ: Q=1,1 мкКл.

Ответ: а) F1=20мкН; б) F2=126мкН; в) F3=62,8 мкН.

7.(9.29) Показать, что электрическое поле, образованное однородно заряженной нитью конечной длины, в предельных случаях переходит в электрическое поле: а) бесконечно длинной заряженной нити; б) точечного заряда.

8.(9.30) Длина однородно заряженной нити l=25 см. При каком предельном расстоянии a от нити по нормали к ее середине возбуждаемое ею электрическое поле можно рассматривать как поле бесконечно длинной заряженной нити? Ошибка d при таком допущении не должна превышать 0,05. Указание: допускаемая ошибка d равна (E2–E1)/E2, где E2 – напряженность электрического поля бесконечно длинной нити, E1 – напряженность поля нити конечной длины.

Ответ: a=4,18 см.

9.(9.33) Напряженность электрического поля на оси однородно заряженного кольца имеет максимальное значение на некотором расстоянии от центра кольца. Во сколько раз напряженность электрического поля в точке, расположенной на половине этого расстояния, будет меньше максимального значения напряженности?

Ответ: в 1,3 раза.

10. По четверти кольца радиусом r=6,1 см однородно распределен положительный заряд с линейной плотностью t=64 нКл/м. Найти силу F, действующую на заряд q=12 нКл, расположенный в центре кольца.

Ответ: F=160 мкН.

11. Получите соотношения п.12 раздела “Основные формулы для решения задач”.

ЗАДАЧИ ГРУППЫ Б

Ответ: r=1350 кг/м 3 .

2.(3.6) В вершинах квадрата находятся одинаковые заряды по q=300 пКл каждый. Какой отрицательный заряд Q нужно поместить в центре квадрата, чтобы сила взаимного отталкивания зарядов была уравновешена силой притяжения к отрицательному заряду?

Ответ: Q=–0,287 нКл.

3.(3.7) В вершинах правильного шестиугольника со стороной b=10 см находятся одинаковые заряды по q=1 нКл каждый. Чему равна сила F, действующая на каждый заряд со стороны пяти остальных?

4.(3.8) Два положительных точечных заряда q1=1 нКл и q2=2 нКл находятся на расстоянии r=5 см друг от друга. Какой величины и в каком месте нужно расположить отрицательный заряд Q, чтобы вся система находилась в равновесии?

Какое будет равновесие?

Ответ: Q=–0,34 нКл нужно расположить на расстоянии 2,07 см от заряда q1 на линии, соединяющей заряды. Равновесие неустойчивое.

5.(3.13) Электрическое поле создается двумя длинными параллельными равномерно и одинаково заряженными нитями, расположенными на расстоянии l=5 см друг от друга. Напряженность электрического поля в точке, равноотстоящей от каждой нити на расстояние b=5 см, равна E=1 мВ/м. Определить линейную плотность заряда t на каждой нити.

Ответ: U=3,2 В.

7.(3.17) Электрическое поле создается тонким проволочным однородно заряженным кольцом. Определить радиус R кольца, если точка, в которой напряженность электрического поля максимальна, расположена на оси кольца на расстоянии x=1 см от его центра.

Ответ: R=1,41 см.

Ответ: q=5 нКл.

9.(3.24) На отрезке тонкого прямого стержня длиной l=10 см однородно распределен заряд с линейной плотностью t=3 мкКл/см. Вычислить напряженность E, создаваемую этим зарядом, в точке, расположенной на оси стержня и удаленной от ближайшего его конца на расстояние a=10 см.

Ответ: E=13,5 МВ/м.

Ответ: 20.

ЗАДАЧИ ГРУППЫ С

1. Получите соотношения п.14 раздела “Основные формулы для решения задач”.

2. Рассчитайте поле однородно заряженного по объему шара на расстоянии r от его центра, если радиус шара R, а объемная плотность заряда r.

Ответ: r R, image807.

image809

Ответ: E=s/(4e0)=1,9 кВ/м.

6. Прямая бесконечная тонкая нить несет заряд с линейной плотностью t1. Перпендикулярно нити расположен тонкий стержень длиной l (см. рис. 3.2). Ближайший к нити конец стержня находится на расстоянии а от нее. Определить силу F, действующую на стержень со стороны нити, если он заряжен с линейной плотностью t2.

Ответ: image825.

image827

7. По тонкой нити, изогнутой по дуге окружности, однородно распределен заряд с линейной плотностью t=10 нКл/м. Определить напряженность электрического поля Е, создаваемую распределенным зарядом, в точке, совпадающей с центром кривизны дуги. Длина нити l=15 см составляет одну треть длины окружности.

Ответ: image829=2,17 кВ/м.

8. Длинный цилиндр радиусом R однородно заряжен с объемной плотностью заряда r. Найти зависимость напряженности электростатического поля, создаваемой этим цилиндром от расстояния r до его оси.

Ответ: 0 R, image835.

9. Напряженность электрического поля в точке, находящейся на перпендикуляре, восстановленном из центра однородно заряженного диска, на расстоянии x от него, имеет вид: image837, где s – поверхностная плотность заряда диска, R – его радиус. Получите это соотношение. Как изменится ответ задачи, если однородно заряженный диск радиусом R2 имеет концентрическое отверстие радиусом R1 (R2>R1)?

Ответ: image839.

Ответ: image841=1,5 м.

11. Напряженность электрического поля зависит только от координат по закону image843где а – постоянная, image129, image149, image120– орты осей х, у и z. Найти величину заряда q, находящегося внутри сферы радиусом R с центром в начале координат.

Ответ: q=4pe0aR.

12. Пользуясь теоремой Остроградского-Гаусса в дифференциальной форме, найти напряженность E электрического поля внутри и вне бесконечной пластинки толщиной 2a, однородно заряженной с объемной плотностью заряда r.

Ответ: image848если –a£x£a;

image850если image852

Источник

Рассмотрим равномерно заряженную бесконечно длинную нить. Линейная плотность заряда равна t.

Заряд, равномерно распределённый по нити, обладает симметрией – он симметричен относительно оси.

image034Нить имеет бесконечную длину, поэтому любому эле-ментарному заряду dq1 можно сопоставить другой элементарный заряд dq2, расположенный симметрично относительно некоторой точки в электростатическом поле.

Поскольку расстояние от эле-ментарных зарядов до этой точки одинаково, модули напряжён-ностей Е1 и Е2 одинаковы. Поэтому результирующая напряжённость

Очевидно, что и в других точ-ках, расположенных на таком же расстоянии от нити, напря-жённость будет иметь такую же величину и направление.

Элементарные заряды и точка в поле были выбраны случайно, поэтому вывод справедлив как для всех остальных элементарных зарядов, так и для всех точек поля.

Это означает, что электрическое поле, созданное заряженной нитью, симметрично относительно оси нити. Другими словами – симметрия поля тождественна симметрии заряда, создающего поле.

Таким образом, векторы напряжённости во всех точках окружающего пространства перпендикулярны нити и модули напряжённости на одинаковых расстояниях от нити одинаковы.

image035

Расчёт напряжённости поля с помощью теоремы Гаусса следует начинать с получения выражения для потока вектора Е.

В свою очередь, выражение для потока следует начинать с выбора формы замкнутой поверхности и её положения относительно источника поля.

Расчёт потока будет максимально прост, если выбрать такую поверхность, симметрия которой идентична симметрии создаю-щего поле заряда.

В данном случае удобно пользоваться замкнутой поверхностью с осевой симметрией.

Такой поверхностью является цилиндр, ось которого совпадает с нитью. Пусть высота цилиндра равна l, а радиус основания – r.

Поток вектора напряжённости поля, созданного нитью, складывается из потока через торцевые поверхности цилиндра и потока через боковую поверхность.

Поток через торцевые поверхности равен нулю, так как векторы напряжённости перпендикулярны нити и, соответ-ственно угол между векторами Е и n равен 90 0,

image036.

Поток через боковую поверхность

image037.

Поскольку все точки боковой поверхности расположены на одинаковых расстояниях от нити, модули напряжённости во всех точках боковой поверхности цилиндра одинаковы, т. е.

image038.

Таков вид выражения для потока вектора рассчитываемой напряжённости.

Следующий этап вычисления напряжённости электро-статического поля – расчёт суммарного заряда, охваченного замкнутой поверхностью.

Заряд, охваченный поверхностью s, можно найти так:

image039.

Тогда, по теореме Гаусса,

image040

image041.

image042.

Таким образом, напряжённость электрического поля, создан-ного равномерно заряженной нитью, прямо пропорциональна линейной плотности заряда нити и обратно пропорциональна расстоянию от нити до интересующей нас точки.

Обратите внимание – напряжённость обратно пропорцио-нальна первой степени расстояния от нити (напряжённость поля точечного заряда обратно пропорциональна квадрату расстояния от заряда).

1.7.2. Поле бесконечной равномерно заряженной плоскости

Пусть имеется бесконечная равномерно заряженная плоскость. Поверхностная плотность заряда равна s.

Из симметрии системы следует, что поле должно быть симметричным относительно плоскости (это можно доказать примерно так же, как в предыдущем примере). Следовательно, вектор Е везде перпендикулярен плоскости и в одинаково удалённых от плоскости точках модули вектора Е одинаковы.

В этом случае в качестве поверхности интегрирования целесообразно выбрать цилиндр, ориентированный так, как показано на рисунке.

image043

Поток вектора Е и здесь складывается из потока через боковую поверхность цилиндра и потока через торцы цилиндра: Ф = Фбок + 2Фторц.

Поток вектора напряжённости через боковую поверхность равен нулю, так как в силу симметрии поля вектор напряжённости дол-жен быть параллелен боковой поверхности и

image044.

Поток вектора напряжённости через торцевые поверхности image045, где r – радиус основания цилиндра.

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Первый строительный портал
Adblock
detector